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Abstract

We develop a new method for urban land valuation based on theory which implies that
land and structure trade as a bundle until the structure has no economic value. This back
casting method first estimates property value, construction costs and residual land value
in the year of new construction. Thereafter, the ratio of land to property value changes
primarily with structure depreciation; changes in property value are shared by land and
structure components.  In contrast,  land residual methods (land value equals property
value minus the depreciated cost to rebuild in the sales year) predicts that the ratio is
volatile because it is leveraged by relatively stable replacement costs. 

We fit  both models to Maricopa County assessor data on houses up to 28 years old
during  a  bust  and  recovery  period  (2007–2018)  and  we  evaluate  the  models  for
relevance to property tax assessment. Our inability to distinguish from a counterfactual
points towards future research focused on sample selection.

*We are grateful to the Lincoln Institute of Land Policy for data and financial support. We benefitted
from conversations and data provided by Jeffrey P. Cohen, John Harding, Jennifer Rearich and Kerry
Vandell,  and from extensive discussion with participants  in a Lincoln Institute  symposium, January
2021.
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Highlights

 Our model of urban land value modifies Alonso-Muth-Mills (AMM) theory by
adding the assumption that land and structure trade as a bundled good in the
years immediately after construction.

 We develop a new back casting algorithm for measuring the ratio of land to total
value at construction, updated with structural depreciation.

 Back casting is compared to a land residual method which says that land and
structure values can evolve independently immediately after construction.

 We evaluate these models with single family sales data for Maricopa county,
Arizona, 20007-2018 using criteria relevant to assessment practice.

 For tax assessment purposes,  data and theory support  a hybrid model  which
allows some independence between land and structure values but not as much as
under the land residual model.

 Models  of  structure  value  are  not  supported  by  the  data,  and  we  cannot
distinguish land value models from a counterfactual, suggesting further research
on the selection of locations for new construction.

1.  Introduction

Appraisers  and  tax  assessors  use  a  hypothetical  “as  if  vacant”  definition  of  land  value  which

ignores the high cost of tearing down existing structures1: These costs exceed direct demolition costs

since the rental value of the existing structure must be sacrificed to exchange it for a new structure that is

at  highest  and  best  use  (HBU).  Appraisers  recognize  this  by  allowing the  property  to  be  valued  as

improved. The HBU for most properties is as improved: irreversibility, the high cost of giving up the

value of existing structures, implies that teardowns and redevelopment are typically infrequent and highly

localized. 

In this paper we define urban land value as the value at the time a structure was built adjusted for

changes in property value over time and adjusted for changes due to possible demolition, renovation or

redevelopment of the depreciated structure.2 Importantly, our definition allows structure and land values

to  interact  in  complex  ways  as  the  property  progresses  from  new  construction  to  demolition  and

redevelopment.

In this study, we apply our definition to newly constructed properties where irreversibility due to

slow depreciation of structures is most relevant.3 Slow reversibility implies that the new structure and

land will  trade as a bundled good,  implying that  both will  be influenced proportionally  in  the  same

1  The Appraisal Institute (2008, p281) says “Land is generally valued as though vacant. … When land is not

vacant, however, its contribution to the value of the property as improved depends on how it can be put to use.”

Here we discuss valuation methods contained in Chapter 16, “Land and Site Valuation.”

2 A possible change in the structure means legally, physically and financially feasible now or at some future time.
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direction by changes in the valuation of the bundle, even over the first 10 or 20 years of structure life. A

gradual change in the land value ratio (i.e., land value divided by property value at any time) due to

structure depreciation is the most important empirical prediction of our new definition. 

Our concept of land value is based on long standing theory based on models by Alonso (1964),

Muth (1969) and Mills (1972) (hereafter, “AMM” theory) which says that property values derive from the

present value of net rents generated from the structure and its location. In AMM theory, land values are

dependent on a structure which is built so as to maximize the present value of the location, i.e., HBU

structure. Land value at the time of new construction is a residual equal to the HBU property value less

construction costs.

Scholars generally agree that AMM theory holds at the time of new construction and there is also

agreement that it holds just before redevelopment when the property trades primarily for land value, and

that value is determined by property value with a HBU structure. Our new idea is that AMM theory does

not hold in the years immediately after HBU construction because land and structure trade as a bundled

good: i.e., relatively gradual reversibility governs the land value ratio.

A broad outline of land valuation based on back casting 

We propose  to  measure  urban land  value  with  a  back  casting  algorithm which  provides  new

empirical content to one of the three existing methods used by professional appraisers for land valuation:4

According to the land allocation method, land value is defined as some percentage of property value. The

problem  with  professional  practice  is  that  the  percentage  allocated  to  land  often  lacks  theory  and

empirical support when applied to most urban properties. For example, assessors and appraisers might use

a constant percentage – or one that does not vary much across time or space. Our data for Maricopa

County show that the assessor used a ratio of exactly 0.2 for over 98% of single family residential (SFR)

properties valued in 2017.

To revise the allocation method,  we start  with a standard hedonic valuation equation which is

basically an automated valuation model (AVM) similar to those used for mass property valuation. An

3 Our  focus  on  new  construction,  and  our  development  of  the  back  casting  method  for  land  valuation,

differentiates this paper from Clapp et al. (2021) where option value theory and empirical results include all age

categories.

4  See Table 16.1 in the Appraisal Institute (2008) for a concise summary of these three valuation methods. The

other two are: 1) the value of the property minus cost to replace the depreciated structure (the land residual

model, also known as the “market extraction method;” (2) using sales of vacant land or properties purchased for

teardown and redevelopment (“sales comparison method”).
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AVM is the computer assisted part of computer assisted mass assessment (CAMA) methods on which we

focus.

The AVM model produces a local house price index (HPI) which we use to back cast AVM values

from the year of sale to the year of construction. Then we use information from a construction cost

manual to estimate the cost of each structure at the time it was built. If the structure were built to HBU at

the time of construction, AMM theory says that construction cost equals structure value. Land value is the

AVM property value minus HBU structure value, both at the date of construction.

The next step is to use an estimate of structure depreciation to update the land value ratio from the

time of construction to the date of any sale of the property. Multiplying this ratio by AVM value as of the

sales date provides an estimate of land value. Accurate estimates of depreciation are important to the real

economic  value  of  structure,  an  estimate  of  reduction  in  property  value  if  the  structure  should  be

destroyed by natural causes. 

An important reason for modelling land value ratios is to estimate land value for all properties (e.g.,

for tax assessment), even those not sold or not available for construction cost estimates. It is possible to

extrapolate land value ratio an corresponding land value estimates to a broad class of properties not used

to estimate the model. For example, we propose to use a model of land value ratios fitted to construction

since 1999 to extrapolate to all properties built and sold since 1989. 

The land value ratio needs to be modelled in order to deal  with the possibility that  individual

structures have not been developed to HBU, i.e., mistakes are made by developers ,or that the market is

not in equilibrium due to mispricing by buyers an sellers, possibly resulting in negative ratios for new

properties. For example, during the global financial crisis years (2007–2011) we found that the volume of

new construction declined by over 75% from its earlier levels. Still, some houses were built and sold,

most at distressed price levels. In these cases, naïve application of the back casting method produced very

low or negative land value ratios in the year of sale. We propose methods for modelling land value ratios

to deal with market disequilibrium and/or mistakes by developers and home owners. 

Land residual theory and methods

The widely-applied land residual method estimates structure value as equal to the cost to build a

new structure at the time of the sale less depreciation. Like back casting, land residual theory is based on

AMM theory: at the time of new construction land must be purchased at a value determined by HBU

property value minus construction costs. At this point property value is the sum of land plus structure

values just as in the back casting method.
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Land residual theory holds that structure value changes over time as construction costs change, less

depreciation which is usually conceptualized as physical wear or functional obsolescence which reduces

structure value.5 Since property value is driven by changes in supply and demand, this assumption allows

land and structure to evolve largely independently,  even in the years immediately after  construction.

While the theory acknowledges that depreciation can become increasingly difficult  to estimate as the

structure ages, its most recent iteration claims that it holds at least during the first 15 years of structure

life. This study contrasts back casting with land residual values for new structures.6

Criteria for evaluating back casting vs. land residual methods

We  have  rigorous  criteria  for  evaluating  the  performance  of  back  casting  and  land  residual

methods:

1. The division of property value into land and structure must produce values that are easily explained

and justified to tax payers when used to tax land at a different rate than structures. Any shifting of the

tax burden over time should be based on facts that can be explained and justified.7

2. Valuation methods must be suitable for CAMA application. Algorithms should be applicable to all

sales with minimal judgement about eliminating outliers, etc.

3. Models of land value ratios must be robust to extrapolating values outside the sample used to estimate

them.8

4. The algorithms should not increase Coefficients of Dispersion (CODs), a widely applied measure of

assessment accuracy calculated from the ratio of assessed value to sales prices.9 If structure value can

5 A thorough exposition of land residual theory is in chapters 5 and 27, Geltner et al. (2006).

6 This differs from our companion paper, Clapp et al. (2021) which compares valuation based on options theory

to land residuals using market-wide averages, not land valuations at the individual property level. The back

casting algorithm is new to this paper.

7  Tax assessors sometimes have to tell owners that property values in their neighborhood went up, so tax bills

shift towards them. They explain this by pointing to known sales prices. Similarly transparent justifications

would be needed for split taxation.

8  Davis et al. (2019) use land residual and kriging methods to extrapolate land value ratios from their estimation

sample to all single family.

9  COD’s are a nonparametric version of standard deviations and coefficients of variation in the ratio of assessed

values to sales prices. COD’s evaluate assessment accuracy around the median ratio, accounting for accuracy in

the tails of the distribution.
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be successfully modeled separately from land value, the sum of structure and land should reduce

CODs when compared to a CAMA model that does not separate land and structure.

Criteria 1–3 are relevant to land valuation for the purposes of taxing land and structure at different

rates.  I.e.,  reliable land value ratios that  can be explained to property owners during volatile market

periods could be used as a basis for equitable property taxation. These ratios can be multiplied by existing

property valuations quickly and transparently, without negatively impacting CODs. 

We introduce criterion 4 to test for the real economic value of structures which we define as the

reduction in property value that would be observed if the structure were destroyed by fire or other natural

event. Since destruction is not observed in our data (and atypical of many datasets) we use CODs based

on separate structure and land models compared to CODs based on AVMs. Criterion 4 is much more

demanding of modeling accuracy because it requires replacing existing assessed values with those based

on separate land and structure values. Without a model of structure value, land and structure would add

up to AVM property value at the sales date by definition: land value equals the AVM value times the land

value ratio and structure value is what is left over.

Estimating land value for new construction: the first part of a “three buckets” method

This paper focuses on new construction defined as any structure where there is no significant value

in the option to redevelop, implemented here with data on properties less than 28 years since construction.

This includes a broad class of properties in most markets since it is unusual for values in a local market to

change so much that 30- or 40-year-old properties are being torn down or substantially redeveloped. We

will  point to data suggesting that after structure age approaches 30 or 40 years then net depreciation

approaches  zero:  i.e.,  maintenance  and  renovation  begin  to  dominate  depreciation  and  obsolescence

becomes an issue. 

In a broader context, we view land valuation as being implemented with a “three buckets” method.

This paper deals with the first bucket, which is the valuation of land and structure for relatively new

structures. The third bucket is properties approaching the end of their economic lives where back casting

will not apply because they are too far from new construction. In these properties depreciation should be

defined to include obsolescence and, for structures approaching the end of life, option value. The second

bucket  is  properties that  have some obsolescence but  they are too far  from construction to use back

casting. We leave exploration of the last two buckets to future research.

We develop the back casting method using Maricopa County assessor data provided to the Lincoln

Institute for Land Policy for research purposes. The Maricopa county assessor provided extensive data on
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sales of vacant land (2000–2018) and sales of properties with structures (2007–2018). Importantly, the

assessor has divided the county into market areas and each market area is divided into neighborhoods in

recognition of the fact that values can differ substantially across space as well as time.

2. Literature Review 

This section summarizes the most relevant literature related to land valuation related to bundled-

good and  land  residual  methods.10 A  more  comprehensive  literature  review is  in  Clapp,  Cohen  and

Lindenthal (2021).

The land residual method – where land value equals the difference between property value and

the cost of replacing the structure, both estimated at the time of sale – dominates scholarly research and

applied methods for separating land and structure values. The assumption that structure is valued at cost

to reproduce (cost to build new, less depreciation) combined with relative ease in calculating construction

costs leads to widespread use of the model. Davis and Palumbo (2008) develop a land price index, and

estimate  it  across  MSAs  and  time  from  1975.  Davis et  al. (2019) develop  land  and  structure  value

estimates with broad U.S. geographical coverage at the zip code and census tract levels, annually 2012-

2018. 

Estimating  depreciation  and  obsolescence  for  older  properties  poses  a  challenge  to  the  land

residual  method.  Davis et  al. (2019) deal  with  this  by  confining  their  estimates  to  properties  with

structures built  within 15 years of the sales date.  They obtain professional  cost  appraisals which are

typically done for the purpose of mortgage underwriting. By limiting land and structure value estimates to

newly constructed properties, they eliminate the need to estimate depreciation and obsolescence for older

properties, an approach that we employ also. 

Some studies have not been so careful about dealing with depreciation. Knoll et al. (2017) use the

residual land value method to study historical land values for 14 different countries, going back to the late

1800s in some cases.  Their  sources and methods differ  by country,  but  in  most  they apply the land

residual model to all structures regardless of age. For the U.S., they find that land values account for

approximately 80% of the house price appreciation since World War II. They find that the ratio of land to

total value has increased substantially since 1950 in many countries.

10  The bundled good literature can be taken as synonymous with hedonic valuation models which are widely used

for property appraisal and tax assessment.
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We follow Davis et  al. (2019) by focusing on new construction,  an approach that  is  usefully

compared to literature focusing on teardown properties which are close to the point of new construction:

i.e., land value is approaching 100% of property value. Dye and McMillen (2007) and Helms (2003) use

Chicago data to evaluate the impact of location and structure characteristics on the potential for teardown.

Munneke and Womack (2017) find teardowns are concentrated in space and time,  as well  as further

evidence that structure value is approaching zero for these properties. Clapp and Salavei (2010) examine

the intermediate case of properties that have some option value but are not near the point of teardown, as

is true of a significant share of urban property. This is consistent with the depreciation literature discussed

below: properties over 40 or 50 years old typically contain some option value, or the option has been

exercised through substantial renovation or teardown and replacement.

One  conclusion  from  the  option  value  literature  is  that  the  economic  value  of  structures

approaches zero as the structure gets closer to teardown. Munneke and Womack (2017) develop a clever

method  for  determining  the  percentage  of  structure  value  remaining  as  a  function  of  structure  age,

characteristics  and  location.  Importantly  for  our  study,  the  economic  value  of  structure  will  differ

dramatically from the cost to replace in these cases unless obsolescence is taken into account: the land

residual  literature has not  produced a good way for correcting construction cost  estimates for option

value. The present study focuses on new construction as a way to avoid dealing with the difficult problem

of estimating depreciation and obsolescence.

Bostic et al. (2007) initiated the land leverage literature, developing empirical evidence of high

land volatility, evidence that was amplified by Knoll et al.  (2017). An important part of the land leverage

hypothesis is that the riskiness of real estate is an increasing function of the ratio of land value to total

property value, a proposition effectively argued by Bourassa et al. (2011). 

A problem with the land leverage hypothesis is that causation is assumed to run from land value

to  total  value,  a  logical  consequence  of  the  assumption  that  structure  is  valued  by  slowly  changing

replacement cost while real estate values are well-known for high amplitude fluctuations. Bostic  et al.

(2007) discuss applications to measuring risk associated with public and private decisions. But theory to

be developed below says that property value is derived from net rent on structures, and that land value is a

residual after subtracting the cost of new construction to the HBU level. We think this is contradicted by

the land leverage assumption that  most  shocks to  property value are to land value,  not  to  economic

structure value.
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The age-value profile and structure depreciation

The back casting method requires a parameter for annual structure depreciation because it uses cost

and property value at the time of construction to estimate the land value ratio, then updates the ratio to the

date of sale with structure depreciation. Similarly, the land residual model applies depreciation to the cost

to build at the date of sale. We rely on previous literature for a range of depreciation estimates and for the

choice of a functional form for depreciation.

Hedonic  valuation models typically include a polynomial in structure age, with results typically

showing an age-value profile that declines at a decreasing rate, at least for the first 20 to 40 years of

structure life that are of primary concern here. This is sometimes referred to as an estimate of the rate of

depreciation and obsolescence, but that view ignores the fact that land does not depreciate. 11

Back casting requires estimates of annual structure depreciation net of typical maintenance and

improvements. Goodman-Thibodeau (1995) point out that common home improvements (new kitchen,

bath, HVAC or roof) are typically not observed by the econometrician, leading to heteroscedasticity in the

estimated age-value profile. Since these typically enhance property value, hedonic age coefficients can be

interpreted as reflecting net change in the profile.12

Goodman-Thibodeau (1995) use cubic and quartic function of age to evaluate the value-age profile

in a standard hedonic model. They are talking about net depreciation as reflected in the value-age profile

when they say that value declines by around 3.5% per year for new structures, less than half that for 8-

year-old structures, near zero for 15–20-year-old and slight appreciation for 20–40-year-old structures (p

40). These findings are roughly consistent with non-parametric apartment building results in Bokhari and

Geltner (2019). In particular, they find substantial value declines in the first few years of a structure life,

analogous to the decline in the value of an automobile once it is no longer new. 

11  Depreciation is best conceptualized as a change in the quantity of structure, not its value, because, in AMM

theory, land value is derived from net rent per unit structure which should not change between small and large

structures at identical locations except for spreading of overhead over structure size.  

12  In private communication, Professor John Harding uses American Housing Survey (AHS) data (over 60,000

observations) to regress maintenance and improvement expenditures as a percent of property value on interior

square footage, number of rooms and a polynomial in building age. The signs of age coefficients are a mirror

image of those in cubic and quartic regressions in Goodman and Thibodeau (1995) suggesting that owners

typically offset some part of gross depreciation. It follows that age coefficients in a typical hedonic regression

will measure net depreciation. AHS maintenance data include major renovations to kitchen, bath, roof, HVAC

and the like.
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We double these value-age numbers based on our data showing that structure is roughly half of

new property value in our high valued market.  This gives 2% to 4% per year structure depreciation

averaged over  20 to 30 years;  these rates  are net  of  maintenance and improvements  and they apply

specifically  to  the  structure.  We  chose  an  exponential  functional  form  based  on  exponential

approximations to non-parametric value-age profiles examined by Bokhari and Geltner (2019). This has

the advantage of simplicity in a study which is focused on land value, a quantity that does not depreciate.

AMM theory

Alonso  (1964),  Muth  (1969)  and  Mills  (1972)  develop  theory  for  a  monocentric  city  on  a

featureless plain under competitive market assumptions.13 Alonso (1964) starts with households that need

a place to live with access to some desirable point such as the central business district (CBD) where they

work. He starts with a utility function for housing and a composite of other goods and a budget constraint

that includes the cost of commuting to the CBD. His great insight was that utility drops out of a solution

where housing costs change inversely to commuting costs, an example of compensating differentials. 

Muth (1969) builds on this insight in chapter 2, considering household locations as a function of

income and taste and developing an early version of rent functions as a result of equilibrium envelope of

competing utility functions. Of most relevance to our study, Muth says “in my framework the demand for

residential  land  is  treated  as  derived  from the  demand  for  housing  rather  than  as  a  demand  at  the

consumer level,  as in other studies (p.  18).” In Chapter 5 Muth allows for the demand for land and

structures to be different functions of income, providing foundations for the hybrid model we develop

below.

Both Muth (1969) and Mills (1972) excel at taking their models to the data with numerous insights

about urban form, notably showing how land values, land uses (e.g., office, industrial and residential),

and population and structural density vary with distance to the CBD. We are particularly interested in

analysis of equilibrium rents and quantities between consumers and producers at a given location (i.e., a

given monocentric anulus): Richardson (1977, chapter 3) has an excellent mathematical treatment part of

which, like our model, shifts away from urban form and focuses instead on land rents.14 

13  A critical review of the many assumptions required by AMM theory, and of advances from relaxing some

assumptions, is in Richardson (1977). For example, he points out that housing must be produced by firms and

employment distributed throughout the city, contradicting commuting exclusively to the CBD.

14  For a nontechnical (graphical) treatment clearly showing land rents as a residual holding constant for location,

see Heilbrun (1987), chapter 6. He carefully lays out many of the model assumptions on page 108.

 10 



3.  A simple theoretical model and numerical example

Land residual theory is based on AMM assumptions that renovation and replacement of structures

keep them near their HBU value, holding constant for location (i.e., distance to the CBD). At the time of

construction, AMM theory holds that property value is driven by the present value of net rental income

and that structure size is determined to maximize property value. Land value is a residual: property value

minus the cost to build to HBU. In the years immediately after construction, land residual theory holds

that structure value is depreciated replacement cost: i.e., except for depreciation the AMM continue to

hold, at least until the structure is 10 or 15 years old.15

Our model departs from land residual theory by assuming slow reversibility due to depreciation –

an assumption referred to as irreversibility in the literature – which implies that, after new construction,

land and structures trade as a bundled good: AMM assumptions hold at the time of construction but not

when  expected  net  rents  change  after  that  date.16 With  bundled  good  assumptions  (irreversibility)

structure value as a ratio to property value changes slowly due to depreciation after construction. We are

interested in compensating differentials between decline in structure value with depreciation and land and

structure value, holding constant for location. We focus on the years immediately after construction when

there is typically little options value. This allows relatively simple analysis of structure value over time

until the structure has reached a point where obsolescence greatly reduces its value.17

As in Muth (1969) and Mills (1972) units of housing are produced with land,  L and structure, S

which are measured in the same units (e.g., square feet), except that we simplify to a linear production

function. Each unit of housing (stock of housing, H ) delivers one unit of services per time period:18

15  See Davis et al. (2019) for an explanation of the 10 or 15 year assumption.

16  Muth (1969) addressed durable structures. “the relative worth of comparative static analysis versus historical

analysis” where durable structures are given by history. Because of his focus (along with most analysts using the

AMM model) on urban form he concludes that “long-run comparative static analysis is a highly fruitful source

of propositions which stand up quite well to empirical testing.” We will show that durable structures given by

history are relevant to the valuation of land and structures at a given point in time.

17  See empirical research by Dye and McMillen (2019) and by Munneke and Womack (2015) on the value of

older  structures  that  are  reaching  the  point  of  redevelopment.  The  consequences  of  aging  housing  for

equilibrium locations in AMM theory is beyond the scope of our analysis. Presumably owners anticipate the

aging of their asset, as in real options theory, but how this maintains spatial equilibrium is an open question.

18  Throughout, parameters are given by lower case letters, variables by upper case.
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H=aL+bS .a ,b , L, S>0 (1)

The ability of structure to produce housing services increases with L and S according to the non-negative

parameters a ,b. The quantity of land L will be assumed fixed.

Equation  (1)  avoids  a  problem with  the  more  typical  Cobb-Douglas  production  function:  the

implausible assumption of constant land share in production. One observes flexible substitution in older

suburban neighborhoods as well as in commercial real estate. Equation (1) delivers a plausible rate of

substitution between land and structure in addition to solutions which avoid messy log transformations.

Rent per unit housing services  H  – and therefore value per unit – declines with the amount of

structure as demonstrated by empirical studies summarize by Munneke and Womack (2015):

Rent/H  = p( S
−c

L ) ,wit h0<c<1.. (2)

Here p  is net (of maintenance costs) rent per unit intensity where intensity is measured by the term

in parentheses. The decline of rent per unit structure as structure size increases is increasing with c. The

limits on c are necessary to obtain rents that increase at a decreasing rate as structure size S increases.

Evidence from rental markets show that rents do not decline steeply with unit size: i.e., c is close to zero.

The value of this property, a quantity that might be inferred from observed sales prices is obtained

by multiplying equations (1) by (2) and calculating the present value of net rents:

P (H )H=( pr )a S−c
+( pr )b ( S

1−c

L ) (3)

Here, r  is the discount rate relevant to calculating net present value. We simplify by assuming that

rents and discount rates are unchanged into perpetuity: then P (H ) = (Rent/H❑/r.19 

The cost to build a unit of structure is a constant dollar amount per unit structure:

Building costs=k Sd , given d , k>0. (4)

Here, k  is the dollar cost to build a unit structure. If 0<d<1 then building costs per unit structure

decline with structure size; this is expected for one- or two-story structures. If  d>1, then our model is

19  One cannot conclude that the first term of equation (3) is land value and the second structure value because

optimized land value is a residual derived below.
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relevant  to larger structures that  require increased structural  strength and lifting building materials  to

higher  levels  (see  Eriksen and Orlando,  2019).  Moreover,  d>1 provides  a  simple  way of  capturing

additional costs such as basements and detached garages that typically accompany larger houses. The

model  solution  can  be  simplified  with  d=1.  We  ignore  demolition  costs  for  simplicity  and  site

preparation costs are modeled as part of vacant land value.

As if vacant land value

Land value as if vacant, the appraisal definition of urban land with an existing structure, is derived

from highest and best use (HBU) which is the structure size S * that will maximize the value of vacant

land, V . After the existing structure has been demolished, the land owner will choose structure size S to

maximize the land residual value, the difference between capitalized rental income from the structure and

the cost of construction:20

Max over S:   P (H )H−k Sd (5)

The maximized difference is land value at the HBU use, V❑:

V *
=( pr )aS (−c )

+( pr )b( S
(1−c )

L )−k Sd. (6)

Here,  asterisks  (*)  signify  optimized  values.  This  is  the  land  residual  value  at  the  point  of

reconstruction: i.e.,  after  the existing structure becomes valueless and it  has been demolished.  It  is  a

hypothetical (“as if”) value because it is observed only at the point after the option to tear down has been

exercised, i.e., after the existing structure is removed. We allow the removal to occur for a number of

reasons such as natural disaster prior to the optimal teardown time.

First and second order conditions for maximization and other technical details are available from

the authors on request. 

The evolution of land and structure value over time

The meaning of real estate as a bundled good is rigorously defined by the model. After the new

structure is completed, construction costs are sunk and irrelevant to valuation of the property which is

given by equation (3). Changes over time are determined by changes in rents per unit services and the

20  There is no option value in this certainty model, an assumption entirely consistent with our focus on new

construction and property value in the years immediately after.
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interest rate,  
p
r

 which has proportional impact on both land and structure.21 I.e., an important empirical

implication is that land and structure will change at the same percentage rate after construction except that

the structure may depreciate.

An  exponential  rate  of  depreciation,  a  simple  approximation  to  reality,  has  been  empirically

documented by Bokhari and Geltner (2019) and is consistent  with the first  30 years of structure life

modeled by Goodman and Thibodeau (1995):

Sδ=S
* e−δage, with 0<δ<1. (7)

Here δ  is the annual rate of depreciation and age is structure age in years. The quantity of structure

is given by Sδ . This setup gives the relationship between land value and structure value as the structure

ages, and allows unexpected changes in rents or interest rates after construction:22

P (H δ )H δ=( pr )aS−c ecδage+( pr )b(S
(1−c ) e−(1−c ) δage

L ). (8)

   

P (H δ )H δ=( pr )[a S−c
+b ( S

(1−c ) e−δage

L )]ecδage (9)

When the structure is new then  SV 0=kS
d,  the cost to build. But as the structure depreciates it

becomes a smaller percentage of property value because land value is not a function of depreciation.

Equation (9) shows that property value – i.e., the bundle of land and structure – evolves over time as   
p
r

changes and that the quantity of structure changes according to equation (7). This implies that land value

gradually increases as a ratio to property value after construction.

Empirical implications of the bundled good assumption are:

21 Structure quantity enters both terms of equation (3) so we cannot conclude that the first term is land value and

the second structure value: the two are bundled after construction to S❑.

22  Equation (8) implies that c  must be sufficiently close to zero to allow for property value to decrease with age.

This is consistent with the empirical observation that rents on large apartments are only 5% to 10% below those

on large apartments.
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 Both land and structure value change proportionally with any change in rents or interest

rates, 
p
r

. The land value ratio as a function of  
p
r

 is constant.

 As structure depreciates the land value ratio becomes larger. This is the only reason for a

change in the land value ratio over time.

 The land value ratio for new construction is calculated from equation (6) divided by (8) (or

equivalently (9))  given that  age=0.  Over time this  ratio is  adjusted with depreciation

according to the back casting algorithm to be explained below. Economic structure value is

calculated over time from equation (9) and the land value ratio.

The land residual model

The land residual model values depreciated structure at the cost to replace:

SV δ ,res=k S
d e−dδage . (10)

Here SV δ ,resis the depreciated structure value given land residual assumptions. When the structure

is new (age =0) this follows from the fact that the labor and materials to build must be bid away from

alternative uses as in the AMM model. I.e., the land residual and bundled good assumptions agree when

age =0 and the two models give the same structure value. Here the AMM assumptions hold because land

and structure are traded separately at the time of construction. But once the structure begins to depreciate,

the  economic  value  of  the  structure  calculated  with  bundled  good  assumptions  can  depart  from

depreciated cost to build, equation (10). 

Land value under the land residual assumption is given by LV δ ,res, the difference between property

value and the replacement cost of the structure:

LV δ ,res=[( pr )aS−c
+( pr )b( S

( 1−c )e−δage

L )]ec∗age∗δ−k Sd e−dδage (11)

Equations (10) and (11) motivate empirical implications from land residual theory. Construction costs k

typically change slowly over time whereas rents and interest rates can be quite volatile. This implies that

land residual value, equation (11) can be quite volatile relative to structure value. The two can move

independently as construction costs and depreciation are not necessarily linked to changes in  
p
r

.  The

empirical implications under land residual assumptions are:
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1. Land residual structure values change only with construction costs and depreciation whereas land

values changes are leveraged by construction costs. Any change in property value due to rents

and interest rates is forced into land value by the model.

2. The  land  value  ratio  changes  with  prices,  rents,  construction  costs  and  depreciation.  Since

changes in land value are leveraged by construction costs, the land value ratio may be much more

volatile than the ratio under the bundled good model.

3. The land value ratio is calculated over time from equations (9) and (11).

These empirical implications can differ radically from those under the bundled good assumption, even

during the first 10 or 15 years of structure life, if there are substantial changes in 
p
r

.

A Hybrid Model: a component of land value can evolve separately from HBU structure value

Discussions  with  participants  at  the  Lincoln  Institute  for  Land  Policy  have  produced  some

situations  in  which  there  can  be  some  independence  between  land  values  and  structure  value.  One

example is waterfront locations which are much more valuable than locations just behind the waterfront

houses.  In  this  case  the  market  may pay  a  premium purely  for  the  location and independent  of  the

substitution of structure for land. i.e., the property is more valuable and a bigger more expensive new

house should be built, but there is also a waterfront premium that is not reflected in construction costs.

Similarly,  prestige  value  is  associated  with  a  neighborhood of  large  houses  on  large  lots:  a  famous

example is the 90210 zip code for Beverly Hills, California.

The second example is a corner lot on a busy street. The location is worth less than an interior

location on a quiet street. A smaller, less expensive house will typically be built on the corner lot, but the

lot may have some negative value independent of new construction decisions.

We model  the partial  independence of some location values by modifying equation (9) with a

parameter that governs the premium and discount:

P (H δ )H δ=( pr )γ [aS−c
+b( S

( 1−c )e−δage

L )]ecδage+(γ−1 )M . (12)

Here, γ ≈1 is the premium or discount to the value of net rental income in the market as a whole; most

properties will have  γ=1 and others will have pure land premiums or discounts over market average

values, M .
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We will implement the hybrid model by including neighborhood dummy variables in the AVM

regression. The resulting land value ratios can be compared to those produced without  neighborhood

dummies.

Numerical examples with empirical estimates

Appendix Table 1 assumes some values for parameters and solves 6 for V*. Most parameters are

chosen for convenience such as values of 1 for a and b. Others were chosen for values consistent with

empirical evidence: c=0.05  and delta=0.03. When we set p/r = 18 and k=10, we found S* = 19, V*=156

and structure value (construction costs) = 255: the land value ratio for new construction is 38% which is

close to our estimates from Maricopa data.

To simulate changes in p/r over the first 12 years of a structure life we use an actual house price

index (HPI) for a Maricopa housing market (market #5) from 2007-2018, a period when Maricopa had

one of the most volatile housing markets in the US with prices declining by 62% by 2011, then increasing

by a similar amount by 2018. We combine the house price changes with our assumption of a 3% annual

depreciation rate and the model land value ratio of 38% which is assumed to apply in 2007 to produce

simulated indices of land value ratios under the two model  assumptions.  We converted the ratios to

indices with values normalized to 1.0 in 2018 (Figure 1).23

– insert Figure 1 about here –

Under the bundled good assumption, the index of land value ratio changes from 0.81 to 1.0 over the

12-year period whereas the change under land residual assumptions are enormously volatile: model ratios

(not indexed) in 2012 are .47 and .385. This volatility is not an artifact of our simple model; in fact, it

follows from the high volatility of house prices in Maricopa combined with the land residual assumption

that movements in structure value are governed by changes in construction costs (assumed to be 1% per

year in our simulation) and depreciation (assumed 3% per year). Under these assumptions the land value

ratio can be less than zero and greater than unity in some years: it was slightly negative in 2011. 

23 It is coincidental that house prices and residual ratios are close to 1.0 in 2007 as well as 2018,

reflecting U-shaped Maricopa prices. The derivation of numbers for Figure 1 is clarified in Appendix

Table A1, Panels B and C.
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An algorithm for implementing theory

The “split tax algorithm” is all that is needed to separate land and structure value for tax purposes.

The remainder of the algorithm is presented to determine if tax equity is increased by further modelling

structure value.

Steps in the split tax algorithm:

1. Estimate a baseline hedonic model (“AVM”) using sales data for new construction, where new

construction can be defined as less than 15 years old; or some higher age limit can be set. The

idea is to exclude properties with any significant value in the option to redevelop.

a. Include annual time dummies in the AVM. The dummies have values of 1 for the year

the sale was observed,  otherwise zero.  Calculate  predicted values  in the  year  of  sale

(AVM_syear) and in the year built (AVM_yrblt).

b.  Assessed  value  to  sales  price  is  avratio_AVM  =  AVM_syear/sprice_syear  where

sprice_syear is the observed sales price in the year of sale.

c. Calculate  baseline  Coefficient  of  Dispersion  (COD)  from  the  assessment  ratio,

avratio_AVM.

2. Run loops to back cast cost to build and hedonic value, both estimated for year built (“yrblt”).

This is done for the possibly limited sample which includes information on the cost to build in the

year built and the property sold in that year or a future year. The structure must be considered

“new” (i.e., with little value in the option to renovate or replace) when it is sold.

a. Back  cast  cost  with  cost  manual  estimates  for  a  current  year  (2018  in  this  study)

combined with a local construction cost index to estimate cost_yrblt.

b. Back  cast  sales  prices  with  the  coefficients  on  the  time  dummies  from  the  AVM

(estimated in step #1) to produce sprice_yrblt.

c. Calculate land value in the year of construction: lv_yrblt = sprice_yrblt - cost_yrblt.

d. Calculate the ratio of land value to total value in the year built: lvratio_yrblt= lv_yrblt/

AVM_yrblt.

e. Update  lvratio_yrblt  to  syear  (=lvratio_syear)  using  an  estimate  of  the  rate  of

depreciation. We approximate with an exponential depreciaiton rate as discussed in the

literature review section.

i. The  formula  is:  lvratio_syear  =  (sprice_yrblt  -  cost_yrblt*exp(-δage))/

AVM_yrblt, where δ is the annual rate of depreciation and age is structure age in

years. 
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ii. This implements the main empirical prediction of the back casting model which

is that depreciation is the only reason for changes in the land value ratio at the

property level once the property starts trading as a bundled good.

3. Specify and estimate a land value ratio model as of the sale year, lvratio_syear. 

a. Model  specification  uses  characteristics  from the  Step  #1  AVM and  follows  theory,

equations (1) – (9). 

i. The simplest theory says that there should be no influence of time or location

characteristics: land value is constant across space within a market area and over

time given that we have already controlled depreciation.

ii. Hybrid theory, equation (12), says that year of sale and location characteristics do

influence that part of land value which varies independently of property value.

b. Additional specification may be based on the theory of substitution of structure value for

land value – land characteristics matter:

i. Small  lots  may  limit  the  ability  to  build  a  structure  that  is  HBU  for  the

neighborhood. Expect a negative sign on small lot variables.

ii. Large lots may contain “excess acreage,” meaning that the lot is much bigger

than required to build a HBU structure. Expect little addition to the lvratio for

large lots, except that the possibility of subdividing into two or more lots may

increase the lvratio.

c. Use the coefficients from the lvratio model to predict “normalized” land value ratios,

lvratio_syear_hat  where normalization controls ideosyncratic characteristics associated

with decisions to build and sell new properties. 

4. Extrapolated predictions are to a possibly much larger set of observations of “new” structures

(i.e., with little option value) where we did not have information on construction costs and sales

prices. The extrapolation of land value ratios is from the possibly selective sample used in step #2

to different neighborhoods and older structures.24 Extrapolation is essential for the purposes of tax

assessment  or  valuing  land  and  structure  for  underwriting  and  investment  purposes  because

properties must be valued even if they did not sell.

24  By extrapolating, we maintain comparability to Davis, et al., 2019 who use a kriging method to extrapolate land

values to properties more than 15 years old or otherwise out of sample. They exclude sales of properties they

judge to have high option value, similar to our focus on relatively new structures.
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Additional steps to model structure value and calculate CODs

5. Specify and estimate a hedonic model designed to model structure value in the sale year. This is

necessary so that we can use CODs to compare valuations calculated from back casting to those

based on AVM_syear/sprice_syear from Step #1.

a. Calculate land value: lv_syear =  lvratio_syear_hat*AVM_syear.

b. Calculate structure price in the year of sale: struct_price_syear = sprice_syear – lv_syear. 

c. Estimate the model of structure value with struct_price_syear as the dependent variable

and use the coefficients to predict struct_value_syear.

d. Model structure value based on the same theory used to construct the AVM model in step

#1.

6. Calculate  the  assessment  ratio  using  the  back  casting  method:  avratio_back  =  (lv_syear  +

struct_value_syear)/sprice. This is motivated by AVM theory as well as industry practice: the

value of new construction should be the sum of its parts.

7. Calculate COD’s for avratio_back and avratio_AVM. Low values are preferred.

Back casting will be useful for assessment purposes if it produces lower CODs than avratio_AVM.

Similarly, back casting can be compared to the land residual method as explained next.

Land residual algorithm compared to back casting

The land residual method begins with step #1, then simplifies by assuming that structure value can be

obtained from the depreciated cost to build. Important differences between the two models as applied

here:

 Land residual uses the cost to build in the year of sale whereas back casting uses cost in the year

of new construction.

 Land residual depreciates cost in the year built whereas back casting depreciates cost in the year

of construction. The percentage depreciation is the same in both methods, the exponential of the

depreciation rate times structure age at time of sale.

 Most importantly, land residual calculates the land value ratio based on AVM value (step #1) at

the date of sale whereas back casting calculates the ratio based on the AVM value at the time of

construction. In a rapidly changing market, this can lead to very different ratios.

The most recent version of the land residual model (Davis, et al., 2019) calculates land value ratios

only for new construction,  similar  to back casting.  Here we define “new” in the same way for both
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methods.  We  apply  step  #4  in  the  back  casting  algorithm  to  residual  land  value  ratios:  model

specifications are identical to ensure that the resulting COD’s can be compared.

4. Data and Results

Maricopa county assessor and GIS data

As part of the Lincoln land valuation project, the Maricopa county assessor provided several data

files. Importantly, the assessor has divided the county into market areas and each market area is divided

into  neighborhood  boundaries  in  recognition  of  the  fact  that  values  can  differ  substantially  by

neighborhood. All data contain latitude and longitude coordinates. Data described in Table 2 include:

 Improved property sales prices, dates, and characteristics as described below. We focus on

single family residential (SFR) annual sales data for 2007 through 2018.

 For this report, we added horizontal and vertical location data based on GIS analysis. In

addition, we add annual FHFA land value and land value ratio estimates from 2012-2018

for  zip codes  in  Maricopa county.  Finally,  we  add 2017 Maricopa assessed values  by

parcel.

 We calculated  construction  costs  using  a  cost  manual  using  Phoenix  square  foot  cost

multipliers, additional  floor  adjustments,  cost  of  a  basement,  garage,  outbuildings,

swimming pool and sports courts. Costs are adjusted for construction quality information

from the Maricopa assessor. Details are in Clapp et al. (2021).

Table 1 describes data filtering starting with all SFR sales in Maricopa county.  We filter data to

drop the top and bottom 1% for each variable, drop non-arm’s length transactions and require complete

data for all variables in the regression models. This reduces average sales price from about $545,000 to

$487,000 but otherwise has little effect on average characteristics. 

Market 5 is chosen as a good place to work out the complexities of land and structure valuation

(e.g., to test “proof of concept” of back casting), not as a representative area: it has ample transactions for

new construction whereas new construction transactions are scarce in many urban areas. 25 Market 5 is

much higher priced than the average Maricopa market and it has larger, older houses on larger lots. We

25  We chose market 5 as a good place to study all three “buckets” of land value: no option value (this paper), high

option value and intermediate  cases.  Clapp et  al.  (2021) focus on the second and third buckets,  using the

relatively large numbers of teardown and vacant land sales in market 5. They provide more detail on the choice

of market 5 as compared to four other market areas.
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focus on new construction in two categories: structure built since 1999 compose our estimation sample

with results extrapolated to those built in the 10 years from 1990 through 1999. Since sales data end in

2018, this gives houses that are no more than 28 years old at sale. In-sample estimation is for houses built

since 1999 which are no more than 18 years old.  

Table 2 describes data we calculated based on GIS analysis, and it includes explanatory variables

relevant to the automated valuation model (AVM). Comparing the in-sample (built since 1999) to the

extrapolation  sample  (built  1990 –  1999),  average  sales  prices  increased  by  over  25% for  the  later

construction, suggesting that new construction was focused on the most desirable neighborhoods, and

reflecting demand for larger structures on larger lots. This is expected in a rising market where houses are

built to HBU: i.e., optimal structure sizes increased in response to changing demand for location, much of

which took place during the boom before the start of our sales data in 2007.26

– Insert Table 1 and Table 2 about here --

Baseline AVM specification and results (Steps 1 and 2)

Table 3 contains alternative specifications for an AVM (the “computer assisted” part of a CAMA

model) designed to implement Steps 1 and 2b in the back casting algorithm. This is a standard hedonic

model with variables for structure, land and location characteristics. A difference between our model and

a  standard  hedonic,  other  than  those  dictated  by  data  availability  (e.g.,  we  do  not  have  number  of

bedrooms or bathrooms) is that our model will be used to calculate COD’s when we extrapolate to new

properties where we do not have construction costs, a task requiring that we strongly avoid overfitting

which will produce noise in the extrapolated ratio of valuations to sales prices. The waterfall nature of the

algorithm – fitted values from the baseline AVM will be used to estimate land value ratios which in turn

will  be  used  estimate  structure  values  –  provides  another  reason for  our  emphasis  on  parsimonious

specifications. All models are fit to new construction (built since 1999) because we focus on this segment

of the housing market.

Table 3 contains several models designed to allow nonlinear effects of land and structure variables.

We evaluated the robustness  of coefficients  across different  specifications when comparing the most

parsimonious specification, Model 1, to the others. The natural logarithm of interior area and lot area are

the most  economically and statistically important  variables,  followed by age,  elevation and,  in some

26  Note that the distributions of sales year and construction quality are almost identical in the two samples, so

differences in average price and property characteristics must reflect changes in location and HBU demand. This

is reflected in changes in the percentage of properties built at relatively high elevation: 34% for construction

since 1999 versus 10.5% for the earlier 10-year period.
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specifications, the two distance variables. Focusing on these coefficients, the most striking finding is that

they respond in plausible ways to the presence of neighborhood dummy variables. When neighborhood

dummies are included, groups 2 and 3 are significant  and group 3 is associated with a 0.38 or 0.39

increase  in  log  house  prices.  Distance  to  the  CBD  becomes  important  with  a  positive  sign  (more

peripheral locations are valued more) after introducing neighborhood dummies.27 We conclude that the

value of new construction is strongly dependent on where it is located and that adequately controlling

location is important.

Property  quality  becomes  more  important  after  controlling  location  with  neighborhood  group

dummies, and distance to the downtown (CBD) becomes large and significant.  We conclude that the

assessor drew neighborhood boundaries so as to isolate quality and that more peripheral locations are

more valuable after controlling neighborhoods.  Simple log specifications for interior area, lot size and

structure age compare favorably to quadratic specifications for these variables.  Models 4 and 5 have

similar coefficients but Model 4 uses fewer variables without sacrificing explanatory power. 28 Also, the

log  variables  are  somewhat  easier  to  interpret  as  elasticities.  Therefore,  we  chose  Model  4  as  our

preferred baseline specification.

Table 4 contains land value ratios where property value is estimated using Model 4, and a 3%

depreciation rate is applied as discussed above. Back casting and land residuals have the same mean

ratios, 0.54 and their distributions are similar.  This is a surprising result  given that theory (Figure 1)

predicts much more volatility over time for the residual method. Appendix Table 2 shows that this is due

to our sample with the U-shaped time pattern of house prices illustrated in Figure 1. The residual (back

casting) land value ratio was 0.64 (0.53) in 2007, falling to 0.44 (0.54) in 2011, the bottom of the bust. By

2013 the two ratios were nearly identical 0.54 (0.55); in the next 5 years the residual ratio averaged about

0.02 higher than back casting. The overall average is identical despite much more volatility in the residual

method, a volatility that is not compatible with different tax rates for land and structure, criterion 1.

– Insert Table 4 about here –

27   The coefficient on the distance to the CBD variable is large in models 2, 4 and 5, but the maximum variation is

only about .5 and for over 50% of properties the variation is only .25. This means that the influence on log of

sales price is within about 10% for most properties.

28  The coefficients on age variables in model 5 are consistent with 3% per year exponential depreciation through

the  first  18  years  of  structure  life,  a  rate  agreeing  with  the  literature  reviewed  above.  We  will  use  3%

throughout.
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Table 4 shows that the land value ratio is strongly positively associated with neighborhood value

and that land residual and back casting ratios respond in the same way. The similarity between the two

methods follows because all three neighborhood value groups have a U-shaped pattern of house prices.

The strong positive association implies that land values increase faster than HBU construction as property

values  vary  across  space.  This  would  not  be  the  case  if  elasticity  of  substitution  between land and

structure were one. Table 4 provides support for the hybrid model: there is a portion of land value which

increases with property value at a higher rate than the value of HBU construction. As suggested by the

hybrid model, this would be the case if neighborhoods have prestige value or if high elevation, perhaps

associated  with  a  view  or  view-access,  were  valued  separately  from  the  value  of  the  lot  for  HBU

construction. 

Land value ratio model specification and results, Step #3

The specification of a land value ratio model follows the logic of our theoretical model.  In its

simplest form, the model says that ratios at the time of construction are the same throughout the market

area: unlike the hybrid model, the simple model does not provide for any variation across neighborhoods.

At the individual property level, the only variation across time is from structure depreciation, and we have

already included depreciation when we calculated land value ratios at the time of sale. At the market level

land value ratios might vary over time if expectations change to provide for different HBU structure

values as a ratio to land value. This will occur only if the elasticity of structure-land substitution differs

from the widely accepted (by scholars of urban land use) value of one. In summary, in its simplest form,

theory does not anticipate much variation in land value ratios over time or space.

This motivates Model 1 in Table 5 which omits year dummies and neighborhood dummies. We

then add these variables  one group at  a  time in Models  2–4 in order  to  evaluate  the  hybrid model.

Appendix Table 3 reports the same regressions for the land residual model.

A striking feature of the coefficients on structure variables is that they become insignificant or

change  sign  when compared  to  Table  3,  Model  4  (repeated  as  the  last  column in  Table  5).  This  is

particularly true of the most economically and statistically significant variables, log of interior area and

structure age. The small, insignificant coefficient on interior area in the land value ratio model suggest

that the association of interior area with land value is the same as with structure value but with opposite

sign: i.e., the two coefficients cancel each other in the land value ratio model.

– Insert Table 5 about here –
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Coefficients on other structural characteristics (structure age, construction class and the presence of

a pool) are significant with signs opposite to the baseline in the last column, as one would expect these

variables are influencing the denominator of the land value ratio to a greater extent than the numerator.

Additional support for the back casting method is obtained from the lot and location coefficients

(Table 5). When compared to the last column, these coefficients are of the same sign which we would

expect if we are measuring land value divided by the sum of land and structure value.29 The fact that we

can account for up to 68% of the variation in the land value ratio supports our modeling approach.

 Observing changes in R2 statistics, we conclude that neighborhood dummies are more important

than year dummies. We are concerned that year dummies reflect the influence of the GFC on land value

ratios rather than the intended relationship between HBU structure value and property value, so we test

models without year dummies. When we omit year dummies, we force the regression to choose a single

land value ratio over time for a property with a given vector of characteristics: i.e., we average out the

influence of the GFC and of the boom which followed.

We will now focus on our preferred specification: the full specification with all the variables from

the baseline AVM, Model 4 in Table 5. This is the hybrid model (neighborhoomd dummies are included)

with year dummies. All the variables used in the baseline are also included in Model 4. Our many tests of

the  alternative  specifications  show that  they  make  little  difference  to  land  values  estimated  for  the

purposes of split taxation as evaluated with our criteria: i.e., Model 4 is robust.

Many coefficients for the land residual Model 5 have the same signs and significance as those for

back casting, and this is also true when we compare the first three models with land residual ratios as the

dependent: see Appendix 3. One notable exception is log of interior area, an important variable that has a

much larger coefficient in Model 5 than Model 4. We conclude that the two models are comparable in

terms  of  their  ability  to  explain  their  different  land  value  ratios.  The  very  high  R-squared  for  land

residuals follows logically from the fact that the denominator in the ratio is the predicted value from the

baseline AVM whereas back casting uses the predicted value in the year of construction. If depreciated

construction costs in the year of sale were a constant share of property value, then land residual regression

would have an R-squared equal to one.

29  The magnitudes of the coefficients cannot be compared because the baseline model is in logs whereas the

dependent variable in Table 5 is the ratio of levels.
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Application to separate taxation of land and structure

In sample predicted land value ratios and land value estimates from the two methods are compared

to total valuation from the baseline specification in Table 6.30 This is all that is required to tax land and

structure separately, i.e., split taxation, without changing CODs which are given by the baseline AVM

specification. This use of land value ratio models is particularly compelling because the model can be

applied without changing existing CAMA systems. The land value ratio are simply multiplied by CAMA

values.

– Insert Table 6 about here –

Both back casting and land residual models produce reasonable results. Importantly, minimum land

value ratios are well above zero even though we include the bust period in sales, as was true in the raw

data  (Table 4).  We did not  have a  problem with negative ratios,  likely because we used a  carefully

researched 3% depreciation for structures. We did see negative ratios with much lower depreciation, but

low depreciation for new structures is not consistent with evidence we reviewed or with age coefficients

presented in Table 3.

As expected, given similar coefficients in table 5, land value ratios estimated with back casting are

similar to land residuals. The main difference is that land residual values have somewhat higher variation

than back casting. Both methods give a reasonable range of land value ratios, with half the ratios clustered

in a range from about 0.5 to 0.6 for back casting, 0.47 to 0.62 for land residuals. This is desirable for

separate  taxation  of  land  and structure  since  tax  payers  are  likely  to  appeal  assessments  with  large

differences. Tables 3 and 5 show that much of the differences can be explained by neighborhood. This is

desirable as long as the boundaries can be explained to tax payers.

Are the two methods equally effective for land value taxation? Figure 2 compares the land value

ratios over time using the yearly coefficients from the models in Table 5. The figure provides empirical

implementation of theoretical results in Figure 1: i.e., changes over time in both figures are driven by

property value changes represented by the house price index. An important difference in the figures is that

theory (Figure 1) tracks the value of an individual property with structure built in 2007 whereas Figure 2

is based on the aggregate of newly constructed properties, including those built before and after 2007. 

– Insert Figure 2 about here –

30  We only compare out preferred specification, Table 5, models 4 and 5. Other models give similar results.
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Figure 2 shows little change over time in the back casting land value ratio which declined slightly

during the GFC, then increased slightly and roughly linearly since 2011. These results support the model

which  says  that  there  should  be  little  variation  overtime  other  than  some  increase  due  to  structure

depreciation.31 Figure 2 shows that the land value ratio estimated by the residual model is much more

responsive to the cycle than the hybrid back casting model.

We conclude that it is undesirable to value land and structure over time with the land residual

model. The independent variation over a cycle is contrary to AMM theory where values are driven by net

rents.  Land  value  ratios  calculated  with  the  residual  method  will  provide  inaccurate  descriptions  of

housing market risk. Most importantly, it is undesirable for property tax equity to shift dramatically over

the housing market cycle as it will if the residual method is used. For example, the land residual model

implies much more volatility in tax burden for those in high land value ratio neighborhoods. This will be

difficult to explain to these tax payers, a violation of our criterion 1.

Robustness to counterfactuals and to fixed ratios

Table 6 compares to a counterfactual in which the back casting land value ratios are randomly

reshuffled: i.e., the set of 2,140 ratios is randomly assigned to the set of explanatory variables. The results

are averages from 100 runs, each with a different random shuffling.32 We introduce the counterfactual to

test the validity of the other two models here and when we extrapolate and evaluate with CODs. We

further  test  robustness  to  a  common  method  used  by  assessors,  a  fixed  land  value  ratio  which  is

represented here by the mean back casting ratio. 

The  ratios  from back casting  and land residuals  are  reasonable  in  the  sense that  they capture

plausible variation across the 2,140 in-sample sales,  whereas counterfactuals and fixed ratios do not.

Clearly random ratios could not be explained to taxpayers; they would be perceived as unfair. But this is

not true of fixed ratios, so one might ask “what have our models accomplished?” Ideally, we could now

estimate equity measures, CODs that would differentiate models from counterfactuals.  But CODs are

determined from the baseline AVM, the second row of Table 6, not from the split between land and

structure. This leads us to evaluate extrapolated ratios instead of CODs.

31  The small decline in the land value ratio during the GFC gives some support to the hybrid model: a portion of

land value varies with market prices independently of HBU structure value.

32  For each run, we estimated the Model 4, Table 5, then used the results to the means (e.g., mean of minimum

values) reported in Table 6. Of course, the average coefficients for the land value ratio models are zero except

for  the  constant  which  is  .53,  near  the  mean value  for  back  casting  ratios.  Therefore,  we do  not  present

coefficients.  
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Extrapolating land value ratios (step 4)

Table 7 extrapolates land value ratios to the sales of structures built in the 1990s. Extrapolation is

an important part of our “three buckets” strategy. Extrapolation is designed to show the relevance of a

subsample of newly constructed properties to all properties that have not experienced obsolescence.

– Insert Table 7 about here –

The most striking information in Table 7 is that the mean baseline AVM value is 27% higher for

properties built after 1999 than for those built in the 10 earlier years, $683,000 versus $537,000. This is

remarkable because the distribution of sales years is the same for both sets of data (see Table 2, next to

last line). This is not an artifact of the model (e.g., of age coefficients) because it holds for raw sales

prices as it must given that the regression passes through mean values.33 We ask whether these differences

influenced our extrapolation results.

The extrapolated sample has somewhat higher land value ratios: 4% for back casting and over 6%

for land residuals. But this is to be expected if aging is reducing the value of structure, as it will since we

are extrapolating the positive age coefficients (+0.032 and +0.037, Table 5) from properties that have an

average year built of 2005 (in-sample) to an average of 1995 (extrapolated sample). 

Differences  in  age  validate  extrapolation,  but  we  are  concerned about  differences  in  location.

Neighborhood coefficients for the estimation sample (2,140 observations) may not be the best way to

extrapolate to nearly five times as many sales, and this may explain some of the discrepancy in sales

prices. Comparing distributions of sales prices by neighborhood (not shown), we find that in-sample and

extrapolated-sample  have  nearly  identical  medians  in  the  low  valued  neighborhood  ($485,000  vs.

$465,000) although we find bigger differences in the same direction occur in the tails of the distribution.

The big differences in median sales prices (up to nearly 40%) occur in the higher valued neighborhoods.

This may be related to a much higher rate of sales at high elevation in properties built after 1999: 34% vs.

11% (Table 2). Perhaps the positive coefficient on high elevation dummy (0.03 for back casting and 0.07

for land residuals) does not adequately capture differences in location.

In summary, application of our in-sample estimates to an extrapolation sample produces reasonable

results, but so do counterfactuals, just as in Table 6. Our concern with differences between extrapolation

and in-sample requires much more evaluation and adjustment. Any new construction sample may be

influenced  by  selection  on  location  and  year  of  construction.  However,  further  analysis  of  sample

33 Small differences in mean values for sales prices vs. predicted prices are due to exponentiation of predicted log

prices.
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selection must be left to future research because this study set out to evaluate the back casting and land

residuals in terms of criterion 4, their ability to support a structure value model that might reduce CODs

in-sample, and this occupied much of our effort.34

Using external data to evaluate AVM and construction cost estimates

There  are  two components  to  the  back  casting  model:  1)  specifications  of  the  AVM (i.e.  the

hedonic regression model) and 2) estimation of the cost to build a structure at the date of construction.

These two components also hold for land residuals but both are evaluated at the date of sale, not date of

construction. This section uses additional data to test the robustness of both of these components.

First,  we  use  Maricopa  County  assessed  values  for  2017  to  test  robustness  of  our  AVM

specifications.35 The assessor informs us that these values were official as of January 1, 2016 and that

they are based on the sales of properties over the previous 2 to 5 years.

Table 8 reports  results  for all  SFR sales and for sales of  new construction over relevant  time

periods. We found high correlation coefficients, ranging from 0.82 to 0.92, between values obtained with

our AVM and Maricopa assessed values. We conclude that our AVM is producing reasonable estimates

of property value. 

– Insert Table 8 about here –

However, COD’s estimated with the assessor data or substantially and significantly below those

based on our AVM. Discussion with the assessor revealed that the difference in COD‘s resulted from

their  use  of  much  more  detailed  spatial  data,  including  data  on  individual  tract  developments. 36 As

discussed  above,  we  went  in  the  opposite  direction  by  simplifying  the  28  neighborhood  identifiers

provided to us in order to avoid over fitting. We are interested in extrapolating our results beyond the

sample used to estimate parameters, so it is appropriate for us to avoid overfitting. By the way of contrast,

the assessor is interested in reducing in-sample CODs in order to meet established standards. 

34 We have done preliminary work to test the validity of land value ratio models. These point towards future

research designed to better control neighborhood and location in the baseline model.

35  We are grateful to Professor Jeffrey Cohen for obtaining and  sharing these data.

36  They say: “both sets of values are explaining most of the same features, however ours has a little extra detail to

account for additional variations in sales prices related to specific subdivisions/developments.” (Source: May

10, 2021 email from the Maricopa Assessor’s office.) This confirms our observations based on Google Street

View. In addition, the assessor confirmed that CODs we calculate with their assessed values are similar to those

they calculated.
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Our AVM as applied to new construction (2,140 sales built since 1999) produced lower CODs than

our AVM applied to all  sales through 2015. The reduction from 0.134 to 0.101 is economically and

statistically significant (Table 8). Moreover, the AVM CODs for 2 years of sales are nearly identical to 4

years of sales, as are Maricopa CODs. We conclude that: 1) changes in the AVM COD’s for different

samples reveal  information relevant  to assessment practice even though the levels of  our COD‘s are

considerably higher than those calculated with the additional spatial data used by the assessor; 2) we need

further evaluation of location and specific subdivisions.

The second major component of the back casting model is estimation of construction costs in the

year of sale. To evaluate this, we compared our construction costs and land value ratios to annual ZIP

Code averages, 2012 through 2018, published by Davis at all (2019). Their depreciated cost to build in

the year of sale are from professional appraisals conducted for the purposes of loan underwriting. We

were able to merge 34 ZIP Code years (in seven ZIP Codes) where we had at least five transactions in our

data. We compared the FHFA data with median values from our data in each ZIP Code year, and with

median Maricopa assessed values discussed in the previous section.

– Insert Table 9 about here –

Table 9 shows high correlation between AVM values and property values from the FHFA data. The

correlation between FHFA values and Maricopa assessor values is substantially lower whereas the AVM

has a high correlation with assessor values at the ZIP code level (Model 3). AVM and FHFA structure

values are related with an R-square of  0.71 (Table 9 Model 4). We conclude that our construction cost

estimates are validated.

We  obtain  much  lower  correlations  for  land  value  ratios.  Our  reading  of  the  technical  notes

provided by Davis et al (2019) suggested this is because of the methods they used to allocate land value

ratios across space. We use actual sales data in market five which has much higher land and property

values than the countywide sample Davis et al (2019) used with kriging to spread land value ratios to zip

codes.

Can land and structure models reduce CODs? Structure value model specification and results, Step #5

As discussed in the introduction, models of structure value are required to assess CODs based on

separating land and structure. As the last model in the waterfall structure of our algorithm, structure value

models would appear particularly simple. Variables influencing land value have been used in steps #4a
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and #4b when calculating land value and structure price (sales price minus land value). Therefore, we

expect structure value to be influenced by structure characteristics alone. We test this simple specification

against a full specification which includes all variables in the baseline AVM, and against inclusion of

time and neighborhood dummies.

– Insert Table 10 about here –

Table 10 Models 1 and 2 show that structure variables are of the same sign and significance as in

the baseline AVM, as expected if we have isolated structure value.37 Further evidence is obtained from the

location variables (golf, elevation, etc.): none are significant. Lot size has a small positive association

with structure value, as might be expected if more structure can be built on a larger lot.  Omitting location

characteristics has little influence on explanatory power (not shown): therefore, our preferred structure

value model is the full specification which uses the same variables as the earlier steps in the waterfall.

The last two models in Table 10 are designed to check our suspicion that the structure coefficients

are an artifact  of  the waterfall  structure of our algorithm. Do back casting and land residual  models

perform better than a counterfactual or any other model?  The answer is that they do not. Most tellingly,

counterfactual random shuffling of land value ratios (Model 4) produces coefficients which are generally

of the same signs and significance as the two models being tested. Clearly, these coefficient values come

from the baseline model, not from information added by the land value ratio models. Comparison to a

fixed land value ratio  equal  to  the  mean value of  .54  (Model  5)  provides  compelling evidence  that

coefficient values are derived from the baseline AVM: our models of land value ratios add nothing to

structure valuation. We find further evidence (not shown) against the structure models when we estimate

structure value models for the extrapolation sample, Appendix Table 4.

 Back casting and land residual COD’s compared to the baseline AVM (steps 6 and 7)

The main result in Table 11 is that the additive model – property value equals land value plus

structure value – in-sample COD (0.128) is much higher than the baseline (0.118). The difference of 0.01

is enormous to a tax assessor and it is statistically significant in the sense that the baseline confidence

interval excludes the additive model point estimate and vice versa.38 Land residual CODs are somewhat

37  We cannot compare coefficient sizes because the dependent is estimated levels of structure prices in dollars

versus the log of sales prices in the baseline AVM.

38  The two confidence intervals overlap by 0.0018 on a range of 0.012, which we interpret as showing statistically

significant differences. Appendix Table 5 shows that several subsamples produce differences in the 0.007 to

0.012 range, establishing the robustness of results in Table 11.
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worse than back casting, but only by between 1 and 2%, a result that is not statistically significant. Our

finding that the models do not improve assessment equity is compelling because the in-sample structures

are relatively new and we estimate construction costs reliably as evaluated with FHA data. 

Not surprisingly, extrapolating land values to the sample built  after 1989 produces even larger

CODs relative to baseline: the increase is marginally significant to assessors +0.004 (=0.132-0.128) but

not statistically significant. 

– Insert Table 11 about here –

We further test robustness with the fixed land value ratio model, which produced CODs very 

similar to back casting and land residuals. We find similar results with random reshuffling of land value 

ratios: one random draw is illustrated in Table 11. Our analysis above of the structure model coefficients 

points to a problem inherent in any such model: estimates of structure value are logically related to 

estimates of land value, here through the waterfall structure of the algorithm. This implies that separate 

estimates of the two values for extrapolation and CODs will necessarily add noise, reducing property tax 

equity. We conclude that it will be difficult to model both land and structure value so as to reduce CODs.

5. Summary, discussion of results and future research

This paper confronts the enormous complexity of estimating land value as a percentage of property

value  with  criteria  relevant  to  property  tax  assessment.  Generally  accepted  theory  says  that  new

construction will typically maximize property value (i.e., it is highest and best use, HBU), implying that

structure value can be estimated with construction cost. The back casting algorithm estimates the land

value ratio with construction costs and property value, both estimated at the time of construction. After

construction we assume that land and structure trade as a bundled good, implying that the ratio of land

and structure value changes only with depreciation: that is, both land and structure respond to changes in

property  value  in  the  same  direction.  We  contrast  this  with  land  residual  assumptions  which  allow

structure and land value to evolve independently after construction.

We use four criteria to evaluate back casting and land residuals with Maricopa, Arizona, data on

new construction since 1989 of single-family residential sales since 2006. Models of land value ratios

produce coefficients consistent with separate identification of land and structure values. They support a

hybrid of back casting and land residual theory: i.e.,  models with and without neighborhood controls

suggest that there is some independent variation of land and structure value and this is confirmed by a
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strong positive association between property values and land value ratios across neighborhoods sorted

from low to high value. If structure were easily substituted for land, an assumption maintained by much

of the literature, then we should observe much less change across space in land value ratios for new HBU

construction. Extrapolation of land value ratios to a much larger sample of houses averaging ten years

older than the estimation sample produced reasonable results but raised questions about how to adjust for

changing locations of new construction over time.

Findings for the land residual method are similar, but land value ratios are volatile over time, an

artifact of that model which forces most variation in property value onto the land value component. This

violates one of the criteria relevant to tax assessment of land and structure, namely that valuation equity

should be easily explained and justified to tax payers.39 We are unable to differentiate land value ratios

calculate  with either  method (bundled or  residual)  from a counterfactual.  This  points  towards future

research into better modeling the selection of locations for new construction and to evaluation criteria

focused on separate taxation of land and structures.

We evaluated and rejected a hypothesis that structure values could be modeled separately from land

value ratios, and that the sum of structure and land values could reduce coefficients of dispersion (CODs),

a standard tool for measuring property tax equity. Counterfactual analysis indicate that it is unlikely that

any such effort will be successful because structure and land valuation are inherently interdependent: the

dependent variable in a model of structure value is derived from a model of land value, implying that a

structure model might add noise to CODs. Alternatively, future research into the relationship between

location and land value ratios might produce a way to separately value structures. 

Future research

Much of our effort went into disproving the idea that separate land and structure values would

improve  assessment  equity.  Now  that  data  and  logic  reject  this  idea,  research  is  free  to  focus  on

improving models of land value ratios, so that they can be used for split taxation by simply multiplying

estimated ratios by CAMA property valuation. 

A workable model of split taxation requires additional research in several areas:

1. Our  results  show  that  construction  shifted  to  higher  valued  neighborhoods  in  the  2000’s,

suggesting the need for better controls for variation in land value ratios over space and time.

Selective  locations  for  new construction  is  a  difficult  issue  for  most  land  valuation  models,

requiring more research.
39  Homes sold a few years apart might produce large changes (after revaluation) in land value taxes under  land

residual assumptions, with changes differing across neighborhoods.
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2. Research into methods for evaluating the accuracy of land value ratios out  of  sample where

accuracy  is  measured  by  property  tax  equity  (i.e.,  CODs  modified  for  split  taxation).  Such

methods  might  be  able  to  clearly  distinguish  different  models  of  land  value  ratios  from

counterfactuals.

3. Much more work on the “three buckets” approach. This paper has focused on the first bucket,

newly constructed properties  defined as  not  having much value in  the  option to  renovate  or

redevelop. It appears feasible to develop practical assessment tools for this bucket. More work is

needed on the second bucket (some option value but not near the point of redevelopment) and

third bucket (substantial option value).

4. More attention is needed to the case where property values are near or below cost to rebuild the

existing structure. This is common in areas with depressed housing markets. Our model suggests

that location still has substantial value in most such markets even though there will be little new

construction, but more research is needed.
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FIGURES

Figure 1: Land value ratios obtained from simple model and house price index

Notes: The market 5 house price index (HPI) plots the year coefficients from Table 3, Model 4. The numbers for
land value ratios are from a numerical  solution to the simple model. See the text and Appendix A1 for details.

Figure 2: House prices and land value ratios, 2007--2018

Notes: HPI is based on coefficients for year dummies from Table 3, Model 4. The back casted LV ratios are from
year coefficients from Table 5, Model 4. The year coefficients for the residual LV ratios are based on Table 5,
Model 5.
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Table 1: Sample selection and summary statistics for key variables

mean SD p25 p50 p75

(a) All Maricopa SFR sales, N=952,087

price 310,185 1,055,229 143,500 217,000 315,917

year of sale 2013 3 2010 2013 2016

int. area (sqft) 1,983 943 1,425 1,822 2,378

lot size (sqft) 10,659 21,752 6,035 7,401 9,474

year built 1992 18 1980 1998 2005

(b) Market 5, N=42,410

price 544,665 432,068 319,900 429,900 635,000

year of sale 2013 3 2010 2013 2016

int. area (sqft) 2,502 1,076 1,824 2,282 2,932

lot size (sqft) 14,103 13,528 7,423 10,106 14,782

year built 1984 12 1978 1985 1994

(c) Remove non-armslength transactions and outliers, N=36,555

price 487,058 236,830 325,000 425,000 590,000

year of sale 2013 3 2010 2013 2016

int. area (sqft) 2,414 720 1,874 2,285 2,837

lot size (sqft) 13.06654 9.341162 7.734 10.106 13.993

year built 1984 12 1977 1984 1993

(d) Extrapolation sample, built 1990-1999, N=12,145

price 543,746 227,102 380,000 489,000 665,000

year of sale 2013 3 2010 2013 2016

int. area (sqft) 2.646 0.778 2.020 2.548 3.205

lot size (sqft) 10,477 7,258 6,426 8,459 11,301

year built 1995 3 1992 1994 1997

(e) Sample built 2000-2018, N=2,140

price 691,805 285,699 485,000 629,500 849,450

year of sale 2013 3 2010 2013 2016

int. area (sqft) 3,001 758 2,369 2,936 3,579

lot size (sqft) 12,977 10,184 7,025 9,981 13,585

year built 2005 5 2001 2003 2006

Notes: Panel (a) summarizes the sales data at MSA level while Panel (b) presents the corresponding statistics at the 
submarket level. We then drop the top and bottom 1% for each variable, drop non-arm’s length transactions and 
require complete data for all variables in the regression models, Panel (c). This reduces average sales price from 
about $545,000 to $487,000 but otherwise has little effect on average characteristics. Panels (d) and (e) further 
subsample based on year of construction.



Table 2: Market 5 summary statistics for regression variables

Built 2000–2018 (N=2,140)
Built 1990–1999: extrapolation sample

(N=10,005)

mean SD p25 p50 p75 mean SD p25 p50 p75

price 691,805 285,699 485,000 629,500 849,450 543,746 227,102 380,000 489,000 665,000

price, fitted 682,756 255,620 485,863 650,512 836,079 537,120 200,353 383,890 488,624 663,694

int. Area 
(000' sqft) 3.00 0.76 2.37 2.94 3.58 2.65 0.78 2.02 2.55 3.21

lot size 
(000' sqft) 12.98 10.18 7.02 9.98 13.59 10.48 7.26 6.43 8.46 11.30

year built 2004.6 5.0 2001.0 2003.0 2006.0 1994.6 2.8 1992.0 1994.0 1997.0

ln(int. area) 7.97 0.26 7.77 7.98 8.18 7.84 0.30 7.61 7.84 8.07

ln(prop. age) 1.96 0.88 1.61 2.30 2.64 2.93 0.25 2.77 2.94 3.14

prop. quality 4.48 0.64 4.00 4.00 5.00 4.39 0.56 4.00 4.00 5.00

has pool 0.57 0.50 0.00 1.00 1.00 0.60 0.49 0.00 1.00 1.00

ln(lot size) 9.25 0.63 8.86 9.21 9.52 9.11 0.49 8.77 9.04 9.33

close to golf 
course 0.04 0.19 0.00 0.00 0.00 0.04 0.20 0.00 0.00 0.00

high elevation 0.34 0.47 0.00 0.00 1.00 0.11 0.31 0.00 0.00 0.00

ln(dist. water) 8.38 0.56 8.22 8.70 8.70 8.01 0.84 7.68 8.26 8.70

ln(dist. CBD) 3.43 0.13 3.36 3.47 3.52 3.41 0.11 3.35 3.44 3.48

year of sale 2012.9 3.4 2010.0 2013.0 2016.0 2013.0 3.4 2010.0 2013.0 2016.0

nbhd. group 1.87 0.59 2.00 2.00 2.00 1.89 0.61 2.00 2.00 2.00

Notes:  This table presents summary statistics for the data we calculated based on GIS analysis, and it includes 
explanatory variables relevant to the automated valuation model (AVM). Comparing the in-sample (built since 1999)
to the extrapolation sample (built 1990–1999), average sales prices increased by over 25% for the later construction, 
suggesting that new construction was focused on the most desirable neighborhoods, and reflecting demand for larger
structures on larger lots. This is expected in a rising market where houses are built to HBU: e.g., optimal structure 
sizes increased in response to changing demand for location, much of which took place during the boom before the 
start of our sales data in 2007. Mean fitted sales price differs slightly from mean sales price because log of sales 
price is the dependent in the AVM.



Table 3: Hedonic price regression estimates (AVM’s)

(1) (2) (3) (4) (5)

ln(price) ln(price) ln(price) ln(price) ln(price)

ln(int. area) 0.635*** 0.580*** 0.674*** 0.617***

(8.57) (9.35) (10.06) (10.47)

ln(prop. age) -0.078*** -0.088*** -0.067*** -0.078***

(-4.19) (-6.83) (-3.64) (-7.04)

prop. quality=4 -0.023 0.083 -0.030 0.068 0.054

(-0.26) (0.88) (-0.45) (0.96) (0.72)

prop. quality=5 0.021 0.155 0.030 0.155** 0.148**

(0.21) (1.64) (0.38) (2.24) (2.06)

prop. quality=6 0.034 0.202** 0.024 0.184*** 0.143*

(0.32) (2.27) (0.28) (2.80) (2.05)

has pool 0.059*** 0.059*** 0.046*** 0.046*** 0.046***

(5.17) (5.30) (3.92) (4.53) (4.70)

ln(lot size) 0.235*** 0.208*** 0.218*** 0.192***

(9.04) (8.61) (8.16) (8.63)

close to golf course 0.188*** 0.101** 0.190** 0.104*** 0.107***

(2.78) (2.45) (2.66) (2.82) (2.96)

high elevation 0.158*** 0.140*** 0.176*** 0.155*** 0.158***

(3.46) (3.32) (4.75) (4.72) (4.33)

ln(dist. water) -0.090** -0.038* -0.103*** -0.051*** -0.052***

(-2.48) (-1.85) (-3.07) (-2.94) (-3.04)

ln(dist. CBD) -0.014 0.371*** 0.005 0.386*** 0.475***

(-0.06) (3.81) (0.02) (3.59) (3.84)

nbhd. group=2 0.024 0.033 0.034

(0.84) (1.49) (1.46)

nbhd. group=3 0.380*** 0.380*** 0.392***

(5.71) (5.96) (6.01)

year dummies No No Yes Yes Yes

int. floor area (1,000 sqft.) 0.355**

(2.60)

int. floor area, squared -0.022

(-1.07)

prop. age, 100 years -1.710***

(-3.94)



prop. age, squared 2.480

(1.44)

lot size (10,000 sqft.) 0.266***

(9.95)

lot size, squared -0.036***

(-7.84)

Constant 6.989*** 5.775*** 7.057*** 5.857*** 11.119***

(9.91) (16.16) (10.35) (17.12) (30.14)

Observations 2140 2140 2140 2140 2140

R2 0.681 0.737 0.791 0.845 0.844

Notes: t statistics in parentheses use robust standard errors, * p < 0.10, ** p < 0.05, *** p < 0.01. Models 1–5 present 
alternative specifications for an AVM (the “computer assisted” part of a CAMA model) designed to implement Steps
1 and 2b in the back casting algorithm. These are standard hedonic models with variables for structure, land and 
location characteristics. A difference between our model and a standard hedonic, other than those dictated by data 
availability (e.g., we do not have number of bedrooms or bathrooms) is that our model will be used to calculate 
COD’s when we extrapolate to new properties where we do not have construction costs, a task requiring that we 
avoid overfitting which will produce noise in the extrapolated ratio of valuations to sales prices.



Table 4: Price and LV ratio estimates, by neighborhood group

Variable mean min p25 p50 p75 max

(a) Neighborhood group 1, N=520

price 564,033 121,500 369,495 485,000 712,500 1,400,000

LV ratio, back casted 0.46 0.24 0.36 0.47 0.54 0.72

LV ratio, resid. method 0.45 0.24 0.36 0.45 0.55 0.68

(b) Neighborhood group 2, N=1,370

price 697,559 215,250 515,000 640,000 822,500 1,565,000

LV ratio, back casted 0.55 0.30 0.51 0.55 0.60 0.74

LV ratio, resid. method 0.55 0.18 0.50 0.56 0.63 0.76

(c) Neighborhood group 3, N=250

price 926,036 135,000 650,000 874,000 1,200,000 1,565,000

LV ratio, back casted 0.65 0.46 0.60 0.64 0.69 0.82

LV ratio, resid. method 0.64 0.20 0.60 0.64 0.69 0.77

(d) Total, N=2,140

price 691,805 121,500 485,000 629,500 849,450 1,565,000

LV ratio, back casted 0.54 0.24 0.49 0.55 0.61 0.82

LV ratio, resid. method 0.54 0.18 0.47 0.56 0.62 0.77

Notes: This table summarizes land value ratios where property value is estimated using Table 3, Model 4, and a 3% 
depreciation rate is applied. This is the result of steps #1 and #2 of the back casting algorithm, before modelling the 
ratios. Land residual methods differ by estimating depreciated cost as of the year sold, and dividing by AVM value 
in the sales year. Back casting and land residuals have the same mean ratios, 0.54 and their distributions are similar. 
The LV ratios rise with property values: they are lowest in neigborhood group 1 and highest in the most affluent 
submarket, neighborhood group 3.



Table 5: Back casted LV ratio regression estimates

(1) (2) (3) (4) (5) Table 3M4

LV ratio,
back.

LV ratio,
back.

LV ratio,
back.

LV ratio,
back.

LV ratio,
resid. method

ln(price)

ln(int. area) 0.020 -0.005 0.021 -0.005 -0.099*** 0.617***

(0.93) (-0.25) (0.97) (-0.26) (-11.80) (10.47)

ln(prop. age) 0.040*** 0.034*** 0.038*** 0.032*** 0.037*** -0.078***

(6.41) (8.14) (6.00) (7.60) (14.81) (-7.04)

prop. quality=4 -0.144*** -0.101*** -0.141*** -0.100*** -0.115*** 0.068

(-6.89) (-5.87) (-5.92) (-6.16) (-15.55) (0.96)

prop. quality=5 -0.218*** -0.167*** -0.213*** -0.164*** -0.148*** 0.155**

(-9.01) (-9.17) (-7.96) (-9.39) (-17.24) (2.24)

prop. quality=6 -0.305*** -0.232*** -0.301*** -0.230*** -0.198*** 0.184***

(-8.79) (-11.21) (-8.09) (-11.09) (-17.67) (2.80)

has pool -0.022** -0.021*** -0.023** -0.022*** -0.014*** 0.046***

(-2.62) (-3.39) (-2.47) (-3.29) (-7.01) (4.53)

ln(lot size) 0.071*** 0.059*** 0.069*** 0.058*** 0.068*** 0.192***

(5.16) (6.25) (5.16) (6.10) (14.39) (8.63)

close to golf 
course

0.050 0.012 0.052 0.015 0.059*** 0.104***

(1.21) (0.85) (1.26) (1.04) (11.80) (2.82)

high elevation 0.039*** 0.026*** 0.043*** 0.029*** 0.068*** 0.155***

(3.49) (3.30) (3.86) (3.43) (38.96) (4.72)

ln(dist. water) -0.029 -0.005 -0.031 -0.006 -0.028*** -0.051***

(-1.48) (-0.41) (-1.59) (-0.55) (-6.29) (-2.94)

ln(dist. CBD) 0.098 0.242*** 0.099 0.245*** 0.099*** 0.386***

(0.95) (4.96) (0.95) (4.75) (4.72) (3.59)

nbhd. group=2 0.031* 0.032 0.043*** 0.033

(1.87) (1.68) (8.15) (1.49)

nbhd. group=3 0.175*** 0.175*** 0.135*** 0.380***

(11.18) (10.94) (22.76) (5.96)

Year dummies No No Yes Yes Yes Yes

Constant -0.269 -0.728*** -0.240 -0.707** 0.707*** 5.857***

(-0.61) (-2.97) (-0.54) (-2.74) (13.03) (17.12)

Observations 2,140 2,140 2,140 2,140 2,140 2,140

R2 0.474 0.665 0.492 0.682 0.933 0.845

Notes: t statistics in parentheses use robust standard errors, * p < 0.10, ** p < 0.05, *** p < 0.01. This table presents 
estimated coefficients from a set of regressions that model back casted LV ratios. In its simplest form, theory does 



not anticipate much variation in land value ratios over time or space, which is why Model 1 omits year dummies and
neighborhood dummies. We then add these variables, one group at a time, in Models 2–4 in order to evaluate the 
hybrid model. A striking feature of the coefficients on structure variables is that they become insignificant or change
sign when compared to Table 3, Model 4 (repeated as the last column). This is particularly true of the most 
economically and statistically significant variables, log of interior area and structure age. The small, insignificant 
coefficient on interior area in the land value ratio model suggest that the association of interior area with land value 
is the same as with structure value but with opposite sign: i.e., the two coefficients cancel each other in the land 
value ratio model. Coefficients on other structural characteristics are significant with signs opposite to the baseline 
in the last column, as one would expect if these variables are influencing the denominator of the land value ratio to a
greater extent than the numerator. Analogously, coefficient on lot related hedonics do not exhibit opposite signs to 
the baseline price model.

Table 6: Fitted values for sales prices, LV ratios and land values, built 2000–2018

Variable N mean min p25 p50 p75 max

Price 2,140 691,804 121,500 485,000 629,500 849,450 1,565,000

Price, fitted 2,140 682,756 218,605 485,863 650,512 836,079 1,959,172

(a) Based on back casting

LV ratio, back casted 2,140 0.54 0.32 0.50 0.54 0.59 0.81

Land value, back casted 2,140 375,714 96,886 261,249 350,014 468,452 1,316,292

(b) Based on residual method

LV ratio, resid. method 2,140 0.54 0.27 0.47 0.55 0.62 0.83

Land value, resid. method 2,140 380,177 85,491 250,142 348,670 483,482 1,364,374

(c) Based on back casting, reshuffled LV ratios

LV ratio, back casted and reshuffled 2,140 0.54 0.50 0.53 0.54 0.55 0.57

Land value, reshuffled LV ratios 2,140 368,219 118,070 262,001 349,977 451,662 1,057,485

(d) Based on fixed LV ratio

LV ratio, fixed 2,140 0.54 0.54 0.54 0.54 0.54 0.54

Land value, fixed 2,140 368,688 118,047 262,366 351,276 451,483 1,057,953

Notes: The fitted prices are derived from the baseline hedonic model, Table 3, Model 4. while fitted values for the 
back cast LV ratios and land values in Panel (a) are based on Model 4 in Table 5. Analogously, Panel (b) is based on 
Model 4 in Table A3. Panel (c) presents averages of statistics from 100 iterations in which the back casted LV ratios 
estimates have been randomly reshuffled. In Panel (d), the LV ratio is fixed to the average value of 0.54 for all 
observations.



Table 7: Fitted values for sales prices, LV ratios and land values, built 1990–1999 (extrapolated)

Variable N mean min p25 p50 p75 max

Diff. 1999
sample

(Table 6)

Price 10,005 543,746 32,700 380,000 489,000 665,000 1,550,000 27.2%

Price, fitted 10,005 537,120 185,398 383,890 488,624 663,694 1,475,050 27.1%

(a) Based on back casting

LV ratio, back casted 10,005 0.56 0.40 0.52 0.56 0.59 0.84 -3.9%

Land value, back casted 10,005 304,094 84,913 209,065 273,454 377,251 1,046,033 23.6%

(b) Based on residual method

LV ratio, resid. method 10,005 0.58 0.33 0.51 0.58 0.63 0.96 -6.4%

Land value, resid. method 10,005 315,855 82,909 211,148 280,438 394,612 1,143,455 20.4%

(c) Based on back casting, reshuffled LV ratios

LV ratio, back casted and 
reshuffled 10,005 0.54 0.50 0.53 0.54 0.55 0.58 0.0%

Land value, based on 
reshuffled LV 10,005 303,009 98,822 213,090 276,853 375,213 1,042,613 21.5%

(d) Based on fixed LV ratio

LV ratio, fixed 10,005 0.54 0.54 0.54 0.54 0.54 0.54 0.0%

Land value, fixed 10,005 290,045 100,115 207,301 263,857 358,395 796,527 27.1%

Notes: This table is analogous to Table 6 except that values are calculated for the sample built 1990-1999 
(extrapolation sample). The fitted values are extrapolated using coefficients estimated on the 2000–2018 sample 
described in Table 1, Panel (d). The last column calculates the difference in means to the 2000 –2018 sample from 
Table 6.

Table 8: Maricopa Market 5 CODs and Correlation Coefficients

Sample Correl. coeff. AVM Maricopa assessments Diff. COD

AVM vs. Maricopa COD Lower
CI

Upper
CI

COD Lower
CI

Upper
CI

AVM–Maricopa

2014–2015 0.8669 0.1338 0.1306 0.1369 0.1187 0.115 0.1226 0.0151

2014–2015, new homes 0.9265 0.1009 0.0915 0.1117 0.0762 0.0688 0.0847 0.0247

2012–2015 0.8232 0.1342 0.1312 0.1374 0.1187 0.115 0.1226 0.0155

Notes: Data are from the Maricopa 2017 assessed values and author AVM calculations. Homes aged < 16 years are 
defined as “new” (average age 7 yrs). CODs divide assessed values by sales in the given years at the individual 
property level. Assessed values labelled as “2017” take effect as of January 1, 2016, so the sales years are earlier. 
AVM values were calculated from hedonic regressions (Model 4 in Tables 2 and 3) and CODs are based on the 
avratio which equals values predicted by the regression divided by sales prices.



Table 9: FHFA Market 5 Land and Structure Values vs. AVM Values

(1)
Prop. value,

as is

(2)
Prop. value,

as is

(3)
Maricopa assessed

values, 2017

(4)
Struc. value,

as is

(5)
Landshare

prop. val. ws

(6)
Landshare

prop. val. ws

AVM estimates 0.0008*** 0.9119***

(6.48) (5.39)

Maricopa assessed 
values, 2017

0.0006***

(3.74)

Depr. cost estimate 0.0012***

(6.02)

LV ratio, back 
casted

0.2104*

(2.16)

LV ratio, resid. 
method

0.1994*

(2.31)

constant -169.8571* 16.8590 -3.87e+04 -192.7145** 0.1819*** 0.1851***

(-1.99) (0.17) (-0.44) (-2.72) (4.03) (4.74)

N 34 34 34 34 34 34

R-sq 0.840 0.559 0.726 0.715 0.269 0.304

Notes:  t statistics in parentheses use robust standard errors, * p < 0.10, ** p < 0.05, *** p < 0.01. The FHFA data from 
Davis et al. (2019) are by zip code and year from 2012–2018; “as-is” measures are based on the actual 
characteristics of each property in the geography without any adjustment to a standard set of characteristics and 
“ws” is a working sample with GSE cost appraisals and passing a variety of filters. See FHFA documentation for 
details. We merged with median zip code-year Maricopa assessed values and with back casting results for structure 
price, land value ratios and property values and regressed FHFA estimates on corresponding Maricopa and back 
casting estimates. Merging resulted are in 34 zip code years with at least 10 transactions.



Table 10: Structure Price Regression Estimates

(1) ln(price) Structure price

(2)
back casting

(3)
resid. method

(4)
back casted, reshuffled

(5)
fixed LV ratio

ln(int. area) 0.6171*** 0.1775*** 0.2274*** 0.1840 0.1821***

(10.47) (5.59) (6.46) (4.78)

ln(prop. age) -0.0779*** -0.0495*** -0.0568*** -0.0301 -0.0304***

(-7.04) (-4.01) (-4.22) (-3.03)

prop. quality=4 0.0685 0.0514 0.0526 -0.0013 0.0001

(0.96) (1.30) (1.33) (0.00)

prop. quality=5 0.1550** 0.1181** 0.0922* 0.0247 0.0266

(2.24) (2.62) (2.05) (0.77)

prop. quality=6 0.1838*** 0.2114*** 0.1868*** 0.0529 0.0541

(2.80) (5.59) (4.99) (1.48)

has pool 0.0462*** 0.0274*** 0.0234*** 0.0149 0.0149*

(4.53) (3.26) (2.81) (2.03)

ln(lot size) 0.1917*** 0.0331** 0.0271* 0.0708 0.0709***

(8.63) (2.17) (1.94) (3.66)

close to golf course 0.1039*** 0.0196 -0.0020 0.0244 0.0253

(2.82) (0.72) (-0.07) (0.75)

high elevation 0.1549*** 0.0209 -0.0066 0.0475 0.0470**

(4.72) (0.58) (-0.17) (2.06)

ln(dist. water) -0.0508*** -0.0140 -0.0030 -0.0146 -0.0145

(-2.94) (-0.94) (-0.20) (-1.08)

ln(dist. CBD) 0.3859*** -0.1366 -0.0878 0.0011 0.0027

(3.59) (-1.05) (-0.69) (0.04)

nbhd. group=2 0.0327 0.0120 0.0231 0.0123 0.0123

(1.49) (0.40) (0.77) (0.75)

nbhd. group=3 0.3797*** 0.0052 0.0165 0.1214 0.1208**

(5.96) (0.08) (0.25) (2.11)

year dummies Yes Yes Yes Yes Yes

Constant 5.8570*** -0.7812 -1.4545*** -1.6225 -1.6160***

(17.12) (-1.69) (-3.29) (-7.53)

N 2,140 2,140 2,140 2,140

R-sq 0.845 0.405 0.386 0.464 0.462

Notes:  t statistics in parentheses, based on robust SEs. Column (2) presents OLS regression coefficients in which 
the estimated structure price based on fitted LV ratios (step #5 of the algorithm) is regressed against a set of property
and location-related hedonics. Column (3) is estimated using land residual assumptions. In both models, property 



size, age, quality, presence of a pool and the size of the lot are statistically significant. The coefficient for all other 
location-related attributes are not significantly different from 0. Model 4 presents average coefficients from 100 
iterations in which structure prices have been derived from back casted LV ratio estimates which are randomly 
reshuffled within the sample in each iteration. The average coefficients for Model 4 are similar in magnitude to 
coefficient estimates from a model in which the LV ratios have been set to the mean value of 0.54 for all 
observations, rendering t-values irrelevant for Model 4.

Table 11: COD comparison

COD Lower CI Upper CI Change COD %

(a) Back casting  method

Additive: prop value = land+struct 
value, built since 1999

0.128 0.122 0.134

Additive: prop value = land+struct 
value, built since 1989

0.132 0.129 0.135

Baseline built since 1999 0.118 0.113 0.124

Baseline built since 1989 0.125 0.122 0.128

(b) Residual methhod

Additive: prop value = land+struct 
value, built since 1999

0.131 0.125 0.137 -2.20%

Additive: prop value = land+struct 
value, built since 1989

0.133 0.130 0.136 -0.75%

(c) LV Ratios shuffled

Additive: prop value = land+struct 
value, built since 1999

0.126 0.120 0.132 1.35%

Additive: prop value = land+struct 
value, built since 1989

0.133 0.130 0.135 -0.38%

(d) Fixed LV Ratio (0.54)

Additive: prop value = land+struct 
value, built since 1999

0.126 0.120 na 1.35%

Additive: prop value = land+struct 
value, built since 1989 0.133

0.130 0.136 -0.38%

Notes: All CoD’s are based on Model 4, baseline with N = 2,140 and 12,145, respectively. The main result of this 
tables is that for the additive model, the in-sample COD (0.128) is much higher than the baseline (0.118). The 
difference of 0.01 is enormous to a tax assessor and it is statistically significant in the sense that the baseline 
confidence interval excludes the additive model point estimate and vice versa. Land residual CODs are somewhat 
worse than back casting, but only by between 1 and 2%, a result that is not statistically significant. Our finding that 
the models do not improve assessment equity is compelling because the in-sample structures are relatively new and 
we estimate construction costs reliably as evaluated with FHA data.  Extrapolating land values to the sample built 
after 1989 produces even larger CODs relative to baseline: the increase is marginally significant to assessors +0.004 
(=0.132-0.128) but not statistically significant. The the fixed land value ratio model (d) produced CODs very similar
to back casting and land residuals. We find similar results with random reshuffling of land value ratios: one random 
draw is illustrated in (c).



APPENDIX: TABLES

Table A1: Numerical solutions to back casting and land residual models

 
Panel A. Find an optimal structure size, S, in 2007

Parameters Assumed values Structure size, S First order condition House value Land Value, V

a 1 1 5.200 136 126.0

b 1 2 4.293 152 130.7

c 0.05 3 3.625 168 134.7

k 10 4 3.109 184 138.0

d 1.1 5 2.691 200 140.9

delta (deprctn) 0.03 6 2.339 215 143.4

p 0.9 7 2.035 231 145.6

r 0.05 8 1.767 246 147.5

Variables 9 1.528 261 149.2

L 1 10 1.312 276 150.6

11 1.115 292 151.8

12 0.933 307 152.8

13 0.765 322 153.7

14 0.608 337 154.3

15 0.461 352 154.9

16 0.323 366 155.3

17 0.193 381 155.5

18 0.069 396 155.7

Optimal S* 19 -0.048 411 155.7

20 -0.160 425 155.6

21 -0.266 440 155.3

22 -0.368 455 155.0

Notes: House value is the solution to equation (3); land value is the solution to equation (6) both conditional on the 
variables S  and L and other parameters of the model. The first order condition is the derivative of equation (6) with 
respect to S. Optimal S* is where the FOC equals zero and it changes from positive to negative (the second order 
condition). The optimal structure value is 255.1 (=411-155.7).



Panel B: Model solutions for Figure 2, bundled good assumptions
 

Age Depreciated house value 
wrt age

year: new
constrction in 2007

Actual HPI,
Mkt #5,

2007=1.0

Depreciated
prop. value
over time

land value land value
ratio: bundled

assumption

0 411 2007 1.44 411 156 0.379

1 402 2008 1.22 341 132 0.387

2 394 2009 0.99 271 107 0.395

3 387 2010 0.93 249 100 0.403

4 379 2011 0.89 235 96 0.411

5 372 2012 1.00 257 108 0.419

6 364 2013 1.16 293 125 0.427

7 357 2014 1.21 300 131 0.435

8 351 2015 1.26 306 136 0.444

9 344 2016 1.30 310 140 0.452

10 338 2017 1.37 321 148 0.461

11 332 2018 1.45 333 156 0.470

Notes: For a property with an HBU new structure in 2007, the land value ratios are calculated with bundled good assumptions. 
The first two columns give the depreciated value of the property using 3% per year depreciation. The actual HPI is property value
over time calculated from baseline AVM year coefficients for market 5 (Table 3, Model 4). Depreciated property value over time 
is column 2 updated with the HPI. E.g., 341 = 402*1.22/1.44). Land value is property value minus depreciated structure value. 

Panel C: Model solutions for Figure 2, land residual assumptions

year: new
constrction in 2007

construct. cost
index

optimal structure
cost new over time

Deprec'td
structure cost

Depreciated prop.
value over time

land value
ratio

2007 1.00 255 255 411 0.379

2008 1.01 258 250 341 0.267

2009 1.02 260 245 271 0.096

2010 1.03 263 240 249 0.035

2011 1.04 265 235 235 -0.004

2012 1.05 268 231 257 0.104

2013 1.06 271 226 293 0.228

2014 1.07 273 222 300 0.261

2015 1.08 276 217 306 0.290

2016 1.09 279 213 310 0.314

2017 1.10 282 209 321 0.350

2018 1.12 285 205 333 0.385

Notes: For a property with an HBU new structure in 2007, the land value ratios are calculated with land residual assumptions. 
Structure value in any year is the depreciated cost to rebuild in that year: building cost appreciation is given in column 2 and 
depreciation is 3%/year. Property value is the same as Panel B.



Table A2: Price and LV ratios, back casted and land residual, per year

Year or nbhd. Variable N mean SD p25 p50 p75

2007 price 169 865,744 284,523 631,500 825,000 1,000,000

LV ratio, back casted 169 .53 .09 .46 .54 .60

LV ratio, at sale 169 .64 .05 .59 .63 .67

2008 price 126 756,472 296,729 525,000 707,500 875,000

LV ratio, back casted 126 .54 .08 .48 .55 .60

LV ratio, at sale 126 .60 .07 .55 .60 .65

2009 price 146 593,253 219,200 425,000 542,500 705,000

LV ratio, back casted 146 .52 .08 .46 .52 .59

LV ratio, at sale 146 .50 .08 .42 .52 .56

2010 price 151 547,345 206,996 390,000 530,000 645,000

LV ratio, back casted 151 .53 .07 .49 .52 .58

LV ratio, at sale 151 .46 .08 .39 .47 .52

2011 price 182 573,009 235,574 395,000 550,000 715,000

LV ratio, back casted 182 .54 .08 .49 .53 .59

LV ratio, at sale 182 .44 .09 .38 .46 .50

2012 price 183 634,861 211,463 500,000 585,000 724,332

LV ratio, back casted 183 .54 .10 .49 .53 .59

LV ratio, at sale 183 .49 .09 .42 .50 .54

2013 price 157 706,008 274,614 485,000 640,000 855,963

LV ratio, back casted 157 .55 .08 .51 .54 .60

LV ratio, at sale 157 .54 .08 .49 .56 .59

2014 price 205 630,182 297,034 393,190 555,000 765,000

LV ratio, back casted 205 .50 .14 .33 .53 .60

LV ratio, at sale 205 .48 .13 .33 .52 .59

2015 price 198 674,299 296,873 419,990 604,000 842,500

LV ratio, back casted 198 .52 .11 .42 .55 .61

LV ratio, at sale 198 .54 .12 .45 .57 .62

2016 price 200 763,602 299,584 549,228 687,500 942,500

LV ratio, back casted 200 .57 .08 .53 .58 .62

LV ratio, at sale 200 .60 .07 .55 .61 .65

2017 price 209 746,236 289,804 558,000 682,000 875,000

LV ratio, back casted 209 .57 .09 .52 .57 .63

LV ratio, at sale 209 .59 .09 .54 .61 .65

2018 price 214 779,808 293,957 549,000 726,150 995,000

LV ratio, back casted 214 .56 .10 .52 .58 .63



LV ratio, at sale 214 .59 .10 .53 .62 .66

Notes: Statistics are for land value ratios calculated from algorithm steps #1 and #2, before modelling the ratios.

 



Table A3: Regression Estimates LV ratio based on residual method

(1) (2) (3) (4) (5)
LV ratio, resid. LV ratio, resid. LV ratio, resid. LV ratio, resid. LV ratio, resid.

ln(int. area) -0.100*** -0.123*** -0.073*** -0.096***

(-9.99) (-14.07) (-12.11) (-26.78)
ln(prop. age) 0.034*** 0.030*** 0.045*** 0.041***

(14.45) (14.38) (30.07) (45.60)
prop. quality=4 -0.135*** -0.093*** -0.144*** -0.103*** -0.110***

(-8.92) (-6.99) (-15.67) (-18.89) (-24.00)
prop. quality=5 -0.174*** -0.121*** -0.177*** -0.125*** -0.140***

(-11.19) (-8.80) (-18.77) (-22.17) (-29.44)
prop. quality=6 -0.251*** -0.183*** -0.263*** -0.198*** -0.214***

(-14.78) (-12.18) (-25.38) (-31.99) (-40.65)
has pool -0.009** -0.008** -0.017*** -0.017*** -0.017***

(-1.99) (-2.24) (-6.57) (-11.18) (-13.13)
ln(lot size) 0.088*** 0.077*** 0.078*** 0.067***

(22.05) (22.02) (32.09) (46.74)
close to golf 
course

0.088*** 0.052*** 0.081*** 0.046*** 0.035***

(9.30) (6.26) (14.27) (13.53) (12.10)
high elevation 0.069*** 0.061*** 0.074*** 0.066*** 0.063***

(15.36) (14.72) (27.07) (39.29) (44.60)
ln(dist. water) -0.040*** -0.018*** -0.045*** -0.024*** -0.023***

(-11.72) (-5.81) (-21.96) (-19.10) (-21.18)
ln(dist. CBD) 0.046*** 0.195*** 0.036*** 0.194*** 0.202***

(2.76) (11.63) (3.57) (27.80) (33.44)
nbhd. group=2 0.016*** 0.011*** 0.016***

(3.47) (5.82) (9.82)
nbhd. group=3 0.158*** 0.154*** 0.166***

(25.67) (60.92) (77.18)

Year dummies No No Yes Yes Yes

int. floor area 
(1,000 sqft.)

-0.032***

(-5.66)
int. floor area, 
squared

0.001

(0.81)
prop. age, 100 
years

0.522***

(12.17)
prop. age, 
squared

2.483***

(9.30)
lot size (10,000 
sqft.)

0.078***

(30.39)
lotsize, squared -0.008***

(-18.07)
Constant 0.761*** 0.287*** 0.835*** 0.340*** 0.207***

(8.59) (3.53) (15.48) (10.14) (9.56)
Observations 2140 2140 2140 2140 2140
R2 0.473 0.603 0.811 0.934 0.954

t statistics in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01



Table A4: Structure Price Regression estimates, built since 1989 (extrapolated)

(1) ln(price) Structure price

(2)
back casting

(3)
resid. method

(4)
back casted,
reshuffled

(5)
fixed LV

ratio

ln(int. area) 0.5904*** 0.1126*** 0.1404*** 0.1444 0.1429***

(15.48) (5.39) (6.78) (5.38)

ln(prop. age) -0.1041*** -0.0852*** -0.1038*** -0.0361 -0.0363***

(-5.73) (-4.51) (-4.89) (-2.89)

prop. quality=4 0.0630* 0.0514*** 0.0490*** -0.0034 -0.0025

(1.78) (4.04) (3.46) (-0.16)

prop. quality=5 0.2188*** 0.1168*** 0.0859*** 0.0378 0.0391*

(5.61) (5.78) (4.09) (1.93)

prop. quality=6 0.3086*** 0.2261*** 0.1959*** 0.0859 0.0865***

(6.69) (8.70) (7.36) (3.21)

has pool 0.0346*** 0.0175*** 0.0136*** 0.0053 0.0053

(4.47) (4.42) (3.41) (1.01)

ln(lot size) 0.1762*** 0.0113 0.0045 0.0596 0.0597***

(9.69) (0.60) (0.24) (4.41)

close to golf course 0.1198*** -0.0032 -0.0281 0.0205 0.0212

(3.55) (-0.13) (-1.12) (0.80)

high elevation 0.0921*** 0.0268 0.0060 0.0271 0.0267*

(3.85) (1.28) (0.27) (1.84)

ln(dist. water) -0.0284* -0.0043 0.0061 -0.0119 -0.0118

(-1.84) (-0.47) (0.70) (-1.14)

ln(dist. CBD) 0.1993* -0.1267 -0.0903 -0.0013 -0.0000

(1.83) (-1.07) (-0.76) (-0.00)

nbhd. group=2 0.1034*** -0.0031 0.0043 0.0268 0.0268**

(4.95) (-0.18) (0.25) (2.54)

nbhd. group=3 0.2966*** -0.0282 -0.0296 0.0892 0.0886**

(5.76) (-0.72) (-0.73) (2.25)

year dummies Yes Yes Yes Yes Yes

Constant 6.6899*** -0.1145 -0.5267 -1.2069 -1.2003***

(15.26) (-0.22) (-1.01) (-4.19)

N 12,145 12,145 12,145 12,145 12,145

R-sq 0.837 0.403 0.390 0.4705 0.469

Notes:  t statistics in parentheses, based on robust SE.



Table A5: CoD comparison

Back casting method Residual methhod
Change
COD

COD
Lower

CI
Upper

CI
COD

Lower
CI

Upper
CI

%

Property Age > 10 years

Additive: prop value = land+struct value, 1999 0.103 0.098 0.11 0.105 0.099 0.111 -1.30%

Baseline built since 1999 0.097 0.092 0.104 0.097 0.092 0.104 0.00%

Year of sale > 2011

Additive: prop value = land+struct value, 1999 0.126 0.12 0.133 0.128 0 0.135 -1.50%

Baseline built since 1999 0.113 0.107 0.119 0.113 0.107 0.119 0.00%

Exclude the most expensive neighborhoods (nbhd. group 3)

Additive: prop value = land+struct value, 1999 0.119 0.114 0.124 0.121 0 0 -1.50%

Baseline built since 1999 0.108 0.103 0.113 0.108 0.103 0.113 0.00%

Exclude the least expensive neighborhoods (nbhd. group 1)

Additive: prop value = land+struct value, 1999 0.124 0.118 0.131 0.126 0 0 -1.00%

Baseline built since 1999 0.117 0.111 0.124 0.117 0.111 0.124 0.00%

Notes: This table shows that several subsamples produce only small differences in the 0.007 to 0.012 range, 
establishing the robustness of results in Table 11.


