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Abstract

Real estate research tends to be plagued by missing data. We show that prediction
accuracy can increase by incorporating observations with missing predictors in the case
of commercial real estate. We also show that missing data may not be occurring at ran-
dom, which makes it more important to incorporate all observations into a prediction
model, be it complete or not. Finally, we show that when one incorporates missing data
into training sets, prediction outcomes can go into opposite directions.

1 Introduction

Missing data is a common problem for researchers in social sciences. It is particularly prob-
lematic for multivariate analyses, as observations with incomplete information are dropped.
One common approach is to replace missing values with means or medians, which is ac-
ceptable if the percentage of missing data is not large. Tabachnick and Fidell (2007) suggest
a five percent threshold while Peng et al. (2006) suggest mean imputation is permissible pro-
vided no more than 10-20 percent of the data is missing. However, real estate researchers
are seldom able to collect well-populated data sets. For example, Cannon and Cole (2011)
remove 24 percent of property transactions from the proprietary National Council of Real
Estate Investment Fiduciaries (NCREIF) database in their study to assess the accuracy of
commercial real estate appraisals. Deppner et al. (2023), doing a similar study using a larger
NCREIF database 12 years later, exclude 45 percent of the property transactions. Using im-
putations in such cases would be at best naive, or at worst irresponsible, which is why Can-
non and Cole (2011) and Deppner et al. (2023) prefer to drop incomplete observations from
their studies.

The potentially bigger issue with missing data is that they may not be missing at random,
leading us to draw the wrong conclusions if transactions are dropped from our studies. In
the case of NCREIF’s commercial real estate database, its members are not required by reg-
ulation to submit all property-level information. They do so on a voluntary basis. The data
is subsequently made available to other NCREIF members for research purposes. There-
fore, properties that always report the full set of data fields may indicate that the property
manager is competent. An incompetent manager, if having issues managing properties on
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a daily basis, is not likely to devote too much time submitting non-compulsory data reports
on these properties. In addition, some managers may have an incentive to omit data fields
that may be embarrassing or detrimental to future sales of their properties. For example,
given a choice of reporting low capital expenditures or submitting a nil entry, a manager
might prefer to report the latter.

Finally, the case for having a model that can deal with missing data is rooted in prac-
ticality. A model is as good as its usability in the real world, and the real world is full of
observations that are tainted with bits and pieces of missing data, especially in real estate. A
pricing model or automated valuation model (AVM) that can predict real estate values only
when all data fields are fully populated is likely to be treated as a lightweight and would not
be well-regarded by practitioners.

This paper investigates the ability of machine learning algorithms to help researchers
overcome these issues. By definition, traditional linear methods are unable to deal with
missing data. Yet, dropping large numbers of missing observations might result in biased
samples that may not be truly reflective of the population. We find that machine learning
models generate outperformance if they are permitted to train on longer but incomplete
data. We also find that findings can greatly differ between studies that are done on small but
complete datasets versus those that are done on long but incomplete datasets.

2 Literature review

The literature on dealing with missing data in real estate is sparse, and to our knowledge,
none of them have made use of machine learning algorithms to address the problem. LeSage
and Pace (2004) address the issue that hedonic models use data that only contain sold prop-
erties, while ignoring the large amount of covariance information in unsold properties sim-
ply because the dependent variable is missing. They employ a spatial estimator that predicts
missing values of the dependent variable. They demonstrate improved prediction capabili-
ties with a Monte Carlo simulation and with actual housing data. In the broader finance lit-
erature, the problem of missing data seems to be addressed somewhat, starting with Warga
(1992) employing a maximum likelihood framework that accounts for missing data in the
time series of U.S. government bonds. Zhou and Lai (2017) investigates the use of AdaBoost
models to deal with missing data when predicting corporate bankruptcy. More recently,
Freyberger et al. (2024) develop a generalized method of moments (GMM) framework to
deal with missing data in cross-sectional asset pricing. Nevertheless, a scan of finance lit-
erature does not seem to indicate a regular use of machine learning models to address the
problem of missing financial data.

Other fields such as meteorology, healthcare, and energy have more eagerly tapped ma-
chine learning techniques to deal with the missing data problem. Wind power prediction
is plagued by incomplete data collected from wind farms because of measurement error,
malfunctioning sensors and misoperation. To improve wind power prediction with missing
data, Liu et al. (2018) combine an expectation-maximisation algorithm with multiple im-
putation approaches. In the healthcare area, Thirukumaran and Sumathi (2016) improve
the prediction accuracy of diseases such as diabetes, lung cancer and breast cancer despite
the presence of missing values ranging from 5 percent to 55 percent. Zaytar and El Amrani
(2016) make use of a neural network algorithm called long short-term memory (LSTM) net-
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work to overcome the issue of incomplete data to improve general weather forecasts. In Park
et al. (2023), a deep learning model, in particular, a multi layer perceptron (MLP), is used to
estimate missing values to improve predictions of daily groundwater levels and daily soil
moisture. To our knowledge, this paper is the first in real estate literature to explicitly make
use of machine learning to overcome the issue of missing data, which may not be missing
completely at random.

3 Data

The dataset used for this study is provided by the National Council of Real Estate Invest-
ment Fiduciaries (NCREIF). It contains quarterly observations of all commercial properties
included in the NCREIF Property Index (NPI) at the asset level, spanning from 1978 through
2020. We collect information on more than 60 asset-level covariates, ranging from numer-
ical variables such as age, net income, capital expenditure, appraisal value, loan interest,
percentage leased, net rentable area and cap rate, to dummy and categorical variables such
as leverage indicator, property type, manager group ID, MSA and appraisal type.

We filter all properties that have been sold, excluding partial sales and transfers of own-
ership. This constitutes a sample of 14,470 transactions. We lag all covariates by two cal-
endar quarters for robustness. Descriptive statistics for numerical variables are laid out in
Table A.1 in Appendix A. Descriptive statistics for dummy and categorical variables are laid
out in Table A.2 in Appendix A. There are 150 unique Manager Group IDs and 236 unique
MSAs in the NCREIF dataset, with the majority of them being tagged to a very small number
of transactions. For convenience, we retain the integrity of the top 50 Manager Group IDs
and the top 50 MSAs based on transaction volume, and group all other Manager Group IDs
and MSAs into a category named “Others”. Qualitatively, the results are unchanged whether
Manager Group IDs and MSAs with low transaction volume are grouped together or not, as
machine learning algorithms are able to deal with sparse and wide datasets, but OLS will
have extreme difficulty in regressing an additional 286 categorical dummies when we need
to use OLS for performance comparison against machine learning algorithms.

We present the frequency of missing values for numerical variables in Table 1. Columns
1 and 2 show the count and percentage of NaNs for each variable. These are clear cases
of missing values as provided by NCREIF. What is less clear-cut are zero values, which are
shown in Columns 3 and 4. Are these truly zero values, or do NCREIF members report zeros
as a substitute for missing values? For example, can we believe that the principal repayment
is zero for 77 percent of the observations when 45 percent of them have outstanding loan
balances? Or can we believe that insurance expenses for 25 percent of the properties are
zero? Regardless of the true answer, traditional linear methods have a tendency to overfit to
the high frequency of zeros and produce inaccurate outputs, unless observations with zero
values are also dropped from the data set, which in turn exacerbates the problem of missing
data. Fortunately, machine learning methods that we will describe in Section 4 are extremely
suitable for dealing with such sparse data. For dummy and categorical variables, missing
values are less of an issue, as seen in Table A.2 in Appendix A. Out of these 12 variables, we
only see the presence of missing values in two of them, namely Appraisals (0.1 percent) and
FundType (47.4 percent).
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Table 1: Missing Numerical Variables

Variable NaN
(Count)

NaN
(%)

Zero
(Count)

Zero
(%)

Total
(Count)

Total
(%)

Year 0 0.0 0 0.0 0 0.0
Age 2956 20.4 3 0.0 2959 20.4
Sq Ft 1635 11.3 0 0.0 1635 11.3
Units 10770 74.4 0 0.0 10770 74.4
Percentage Leased 2045 14.1 0 0.0 2045 14.1
Net Rentable Area 4075 28.2 0 0.0 4075 28.2
Sale Price 0 0.0 0 0.0 0 0.0
Market Value 632 4.4 0 0.0 632 4.4
Market Value_Lag1 632 4.4 0 0.0 632 4.4
Market Value_Lag2 959 6.6 0 0.0 959 6.6
Market Value per Sq Ft 1694 11.7 0 0.0 1694 11.7
Market Value per Unit 11352 78.5 0 0.0 11352 78.5
Cap Rate 6492 44.9 7 0.0 6499 44.9
NOI 632 4.4 13 0.1 645 4.5
NOI_Lag1 959 6.6 12 0.1 971 6.7
Base Rent 4412 30.5 0 0.0 4412 30.5
Contingent Income 665 4.6 13310 92.0 13975 96.6
Reimbursement Income 898 6.2 6246 43.2 7144 49.4
Other Income 1137 7.9 6089 42.1 7226 50.0
CapEx 1143 7.9 3764 26.0 4907 33.9
CapEx_Lag1 1179 8.1 3672 25.4 4851 33.5
CapEx_Lag2 1483 10.2 3665 25.3 5148 35.5
Additional Acquisition Costs 736 5.1 13308 92.0 14044 97.1
Leasing Commissions 794 5.5 10080 69.7 10874 75.2
Tenant Improvements 941 6.5 9892 68.4 10833 74.9
Building Improvements 1139 7.9 8269 57.1 9408 65.0
Building Expansion 686 4.7 13541 93.6 14227 98.3
Other CapEx 898 6.2 10488 72.5 11386 78.7
Income Return 632 4.4 13 0.1 645 4.5
Capital Appreciation Return 632 4.4 4540 31.4 5172 35.8
Total Return 632 4.4 7 0.0 639 4.4
Cash Flow Return 632 4.4 9 0.1 641 4.5
Lev. Income Return 632 4.4 14 0.1 646 4.5
Lev. Appreciation Return 632 4.4 4332 29.9 4964 34.3
Lev. Total Return 632 4.4 7 0.0 639 4.4
Interest Payment 658 4.5 7758 53.6 8416 58.1
Principal Payment 661 4.6 11141 77.0 11802 81.6
Regular Principal Payment 652 4.5 11365 78.5 12017 83.0
Other Principal Payment 645 4.5 13509 93.4 14154 97.9
Loan Balance 632 4.4 7893 54.5 8525 58.9
Loan Balance_Lag1 632 4.4 7792 53.8 8424 58.2

Notes: This table presents the count and percentage of NaNs and zeros for numeri-

cal variables found in the NCREIF database.
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Table 1: Missing Numerical Variables (continued)

Variable NaN
(Count)

NaN
(%)

Zero
(Count)

Zero
(%)

Total
(Count)

Total
(%)

New Financing 644 4.5 13341 92.2 13985 96.7
Admin Expense 863 6.0 4424 30.6 5287 36.6
Marketing Expense 768 5.3 7979 55.1 8747 60.4
Utility Expense 757 5.2 4564 31.5 5321 36.7
Maintenance Expense 715 4.9 3915 27.1 4630 32.0
Insurance Expense 730 5.0 3738 25.8 4468 30.8
Management Fee Expense 666 4.6 4177 28.9 4843 33.5
Tax Expense 717 5.0 3868 26.7 4585 31.7
Other Expense 1174 8.1 5622 38.9 6796 47.0
Total Expense 4128 28.5 0 0.0 4128 28.5

Notes: This table presents the count and percentage of NaNs and zeros for numer-

ical variables found in the NCREIF database.

4 Methodology

4.1 General additive prediction error model

Throughout our analysis, we adopt a general additive prediction error model to describe the
relationship between a property’s transacted value and its corresponding predictors, i.e.

Sal ePr i cei ,t+1 = Et [Sal ePr i cei ,t+1]+ϵi ,t+1, (1)

In addition, we further assume the conditional expectation of ith property’s transacted
value Sal ePr i cei ,t+1 given the information available at period t to be a function of a set of
predictors, i.e.

Et [Sal ePr i cei ,t+1] = g (zi ,t ), (2)

where zi ,t is the baseline set of asset-level predictors, properties are indexed by i = 1, ..., N
and quarters by t = 1, ...,T . The functional form of g(.) is left unspecified and depends on
z only through zi ,t . This means that my prediction model does not use information from
history prior to t, or from properties other than the ith property.

The vector of predictors, zi ,t , consists of the ith property’s characteristics, which can be
represented as:

zi ,t =
ci ,t

di ,t

ei ,t

 , (3)

where ci ,t is a 50 x 1 vector of numerical variables, dt is a 9 x 1 vector of categorical variables,
ei ,t is a 3 x 1 vector of dummy variables. The categorical variables, after going through the
process of dummy-encoding, become a 309 x 1 vector of dummies. Hence, the total number
of covariates in zi ,t is 50 + 309 + 3 = 362.

We include time fixed effects but do not include macroeconomic predictors in our mod-
els to keep our models parsimonious and focused on teasing out the effects of missing data
at the asset-level, and not at the macro-level.
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Figure 1: An Ensemble of Trees (Chen and Guestrin 2016)

Notes: A typical tree ensemble model. The final prediction for a given observation is the sum of predictions
from each tree.

4.2 Tree ensemble model

Machine learning algorithms have become important in many areas. Smart spam classi-
fiers protect our email inboxes by learning from massive amounts of spam data and user
feedback. Advertising systems optimise user clicks with the right ads. High-energy physics
experiments rely on anomaly event detection systems to find events that lead to new break-
throughs. On a similar note, we shall make full use of machine learning’s ability to deal with
the presence of sparse data in real estate.

Our algorithm of choice is XGBoost, a well-regarded tree ensemble model developed by
Chen and Guestrin (2016). A typical tree ensemble model (see, for example, Breiman 2001
and Friedman 2001) can be illustrated by Figure 1. For a given data set with n samples and
m features, D = {(xi , yi )}(|D| = n,xi ∈ Rm , yi ∈ R) , a tree ensemble model uses K additive
functions to predict the output,

ŷi =φ(xi ) =
K∑

k=1
fk (xi ), fk ∈F , (4)

where F = { f (x) = wq(x)}(q : Rm → T, w ∈ RT ) is the space of regression trees. The structure
of each regression is represented by q , and it maps an observation to the corresponding
leaf index. T is the number of leaves in the tree. Each fk corresponds to an independent
tree structure q and leaf weights w . Each regression tree contains a continuous score on
each leaf, which is represented by wi on the i -th leaf. For a given observation, the tree
ensemble model will use the decision rules in all the trees (given by q) to classify it into the
appropriate leaves, and calculate the final predicted value by summing up the score in the
assigned leaves (given by w).

4.3 Sparsity awareness algorithm

In many real-world problems, it is quite common for the input x to be sparse. There are mul-
tiple possible causes for sparsity, but two typical reasons are the presence of missing values
in the data and frequent zero entries in the statistics, a phenomenon that is clearly present in
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Figure 2: A Sparsity-Aware Tree (Chen and Guestrin 2016)

Notes: A tree structure with default directions. An observation will be sent into the default direction when the
feature needed for the split is missing.

Figure 3: Sparsity-aware Split Finding Algorithm (Chen and Guestrin 2016)

the commercial real estate database of NCREIF (see Table 1). In XGBoost, Chen and Guestrin
(2016) introduces a novel sparsity-aware algorithm for parallel tree learning. They make the
algorithm aware of the sparsity pattern in the data by adding a default direction in each tree
node, which is illustrated in Figure 2. When a value is missing in the sparse matrix x, the
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Table 2: Comparison of Major Tree Boosting Systems

System sparsity
aware

exact
greedy

approximate
global

approximate
local

out-
of-
core

parallel
learning

XGBoost yes yes yes yes yes yes
pGBRT no no no yes no yes
Spark MLLib partial no yes no no yes
H2O partial no yes no no yes
scikit-learn no yes no no no no
R GBM partial yes no no no no

Notes: This table shows the comparison of the XGBoost algorithm versus other competing machine learning

algorithms. Exact greedy refers to the ability to enumerate over all possible splits on all the features in the data

set. Approximate global refers to the ability to propose all the candidate splits during the initial phase of tree

construction, and uses the same proposals for split finding at all levels. Approximate local refer re-proposes

after each split. The global method requires less proposal steps than the local method. Out-of-core refers to

the ability to utilize disk space to handle data that does not fit into main memory. Parallel learning refers to

the ability to train with multiple CPU cores.

instance is sent in the default direction. There are two possible default directions in each
branch and the optimal default direction is learnt from the data. The algorithm is shown
in Figure 3. While there are other regression tree models such as Spark MLLib, H2O, and R
GBM that contain sparsity-aware abilities (see Table 2), XGBoost is chosen as our algorithm of
choice because of its speed, memory usage and accuracy over other competing algorithms.

4.4 Walk-forward validation versus k-fold cross-validation

To benchmark the predictive power of the models, we adopt the walk-forward validation
method that Leow and Lindenthal (2025) use, rather than the k-fold cross-validation method
commonly adopted by other real estate researchers in machine learning. Walk-forward
analysis requires dividing our data into two disjoint periods while maintaining the temporal
ordering: the training sample and the testing sample. We use the training sample to estimate
the model parameters. The testing sample contains the next 12 months of data right after
the training sample ends. These data, which never enter into model parameter estimation,
are used to test our models’ prediction performance. When one uses k-fold cross-validation
on real estate data, such as Ho et al. (2021) and Deppner et al. (2023), one may inadvertently
introduce time contamination into the training set. This is because k-fold cross-validation
randomly splits the entire dataset into k groups of the same size, with the model training k
times on k−1 folds and tested on the kth fold. To elaborate, each observation in the data set
is assigned to an individual fold and stays in that fold for the duration of the cross-validation
procedure. This means that each sample is given the opportunity to be used in the hold-out
set one time and used to train the model k − 1 times. While this technique works well for
most machine learning problems, such as image recognition or anomaly event detection,
it gives an unfair and unrealistic advantage when applied to time series data in real estate.
For example, if sale transactions during the Great Financial Crisis of 2007-08 (GFC) are ran-
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domly assigned across 10 folds 1, a well-tuned machine learning model can easily fit to the
historically low price per square footage associated with MSAs severely affected by the GFC
in the training folds, and come up with accurate predictions for transactions occurring the
GFC period in the same MSAs within the test folds. This problem is exacerbated if one aug-
ments asset-level variables with macroeconomic variables such as GDP, employment rate
and government bond yields, which Deppner et al. (2023) did. It is not uncommon to see
high R2s nearing 99 percent in such machine learning studies, whereas the R2s in our study
range between 80-90 percent because we maintain temporal order by “walking forward”.

In our study, we do not require a validation sample as we do not perform any hyperpa-
rameter optimization following Elkind et al. (2022). Default hyperparameters are used where
possible. This forms the lower bound of performance for our machine learning models. Ap-
pendix B provides more information on default hyperparameters. All training is executed
with open source libraries on an Apple M1 Ultra chip with a 20-core CPU and a single 48-
core GPU.

4.5 Performance metrics

To measure the accuracy of our model’s predictive performance with and without missing
values, we calculate the out-of-sample predictive R2, by test year according to the walk-
forward procedure, and across the entire test period. This is an indicator of whether the
model predicts individual sale prices well. However, most NCREIF members invest in a
portfolio of properties, so they may be more interested in the value of the portfolio rather
than in the values of individual properties in the portfolio. Therefore, a mean percentage
error (MPE) metric,

MPE = 1

n

n∑
i=1

Sal ePr i cei −Pr edi ctedPr i cei

Pr edi ctedPr i cei
, (5)

where positive and negative individual errors cancel out, is more informative for such an
investor. We adopt MPE as our second performance metric.

4.6 Variable importance and marginal relationships

We aim to identify NCREIF covariates that have an important influence on the cross-section
of expected commercial property prices, while simultaneously controlling for other predic-
tors in the data set. We discover influential covariates by ranking them according to the
concept of variable importance, which we denote as VI j for the j th predictor. Like Gu et
al. (2020), we calculate the reduction in predictive R2 from setting all values of predictor j
within each training sample to zero, while holding the remaining predictors fixed. We aver-
age them into a single importance measure for each predictor.

As part of our analysis, we also trace out the marginal relationship between expected
property values and each predictor. Despite obvious limitations, such a plot is an effective
tool for visualizing the first-order impact of covariates in a machine learning model.

1A commonly used parameter for k-fold cross validation is k=10. See Ho et al. (2021) and Deppner et al.
(2023).
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Table 3: Yearly breakdown of NCREIF sale transactions, with and without missing values

Year Total No. Obs. with Data Loss Year Total No. Obs. with Data Loss
of Obs. no NaNs (%) of Obs. no NaNs (%)

1978 5 0 -100.0 2000 318 27 -91.5
1979 2 0 -100.0 2001 302 34 -88.7
1980 3 0 -100.0 2002 334 71 -78.7
1981 4 0 -100.0 2003 417 79 -81.1
1982 23 0 -100.0 2004 607 101 -83.4
1983 47 0 -100.0 2005 771 148 -80.8
1984 76 0 -100.0 2006 664 127 -80.9
1985 97 0 -100.0 2007 603 137 -77.3
1986 124 0 -100.0 2008 251 51 -79.7
1987 91 0 -100.0 2009 252 56 -77.8
1988 129 0 -100.0 2010 317 72 -77.3
1989 149 0 -100.0 2011 410 109 -73.4
1990 110 0 -100.0 2012 619 206 -66.7
1991 107 0 -100.0 2013 863 323 -62.6
1992 97 0 -100.0 2014 770 291 -62.2
1993 156 0 -100.0 2015 641 253 -60.5
1994 182 0 -100.0 2016 784 350 -55.4
1995 185 1 -99.5 2017 676 175 -74.1
1996 370 0 -100.0 2018 581 162 -72.1
1997 452 0 -100.0 2019 690 263 -61.9
1998 399 0 -100.0 2020 473 145 -69.3
1999 319 0 -100.0 Total 14470 3181 -78.0

Notes: This table reports the yearly breakdown of NCREIF sale transactions, with and without missing values.

Columns 2 and 6 display the number of observations (i.e. sale transactions) for each year. Columns 3 and

7 display the number of observations that do not contain missing values within the 63 data fields shown in

Table A.1 and Table A.2, with the exclusion of Units and Market Value per Unit. Columns 4 and 8 calculates the

percentage of observations that one would have to discard if one only uses observations without missing data.

5 Empirical analysis

5.1 Full sample analysis

Table 3 displays the count of NCREIF properties that have been sold on a yearly basis, and
whether they contain missing data. Appendix C shows the breakdown of missing values
by property type. As we are using walk-forward validation instead of pooling all observa-
tions for a k-fold cross-validation, this table is important in helping us decide when to start
testing our model. Columns 2 and 6 show all properties that were sold between 1978 and
2020, whether or not they contain missing values in any of the covariates that are shown
in Tables A.1 and A.2. Columns 3 and 7 show the number of properties that do not con-
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tain missing values in any of the covariates2. We have a total of 14,470 properties that were
sold between 1978 and 2020, and a subset of 3,181 properties that are not “contaminated”
by missing values. This represents a 78 percent loss in the number of observations should
researchers wish to model on a clean and tidy data set. For comparison, Deppner et al.
(2023) start with 12,956 properties from 1997 through 2021, and after filtering, end up with
a sample of 7,133 properties. This represents a data loss of 45 percent, which is lower than
our study as we make full use of the range of covariates that the NCREIF database provides.
Cannon and Cole (2011) start with 9,439 properties from 1982 through 2010, and after filter-
ing, end up with a sample of 7,214 properties. This represents a data loss of 24 percent, as
they use even fewer covariates than Deppner et al. (2023) in their study. In Section 5.2, we
shall intentionally drop some covariates to achieve a level of data loss that is comparable to
Cannon and Cole (2011), but we will show that retaining more covariates, even if they are
full of missing data, is still superior to having less covariates when it comes to predictions
and understanding the behaviour of real estate transaction prices.

Given the dearth of complete observations from the 1980s and 1990s, we start training
all models in 2000 and conduct walk-forward tests from 2001 through 2020. In Table 4, in
Columns 2 and 4, we report the out-of-sample R2s of an XGBoost model trained and tested
on properties without missing values and with missing values, respectively. We do not show
the results of simple OLS models that are trained on the same data sets. With more than
300 covariates described in Section 4, most of which are sparse data populated by zero val-
ues, the OLS model is unable to cope and generates negative out-of-sample R2s. On the
other hand, a tree-ensemble model like XGBoost that is sparsity-aware is able to cope and
generate high positive out-of-sample predictability. The R2

oos of XGBoost that is trained on
properties with no missing values is 84.12 percent while R2

oos of XGBoost that is trained on
properties with missing values is 91.66 percent, an improvement of 7.54 percentage points.
If one were to use a 10-fold cross-validation to evaluate the models instead of using walk-
forward testing, the R2s jump to 93.02 percent and 94.47 percent respectively (versus 84.12
percent and 91.66 percent for walk-forward), a clear sign of data leakage. If one were to in-
clude the time series of macroeconomic variables into the data set, the “out-of-sample” R2s
of the 10-fold cross-validation will jump to nearly 100 percent. Therefore, researchers should
be careful in using k-fold cross-validations when applying data sets to machine learning
models. In Table D.1 of Appendix D, we display the performance results of the same analysis
using natural log of variables. The results are qualitatively unchanged from Table 4.

One might argue that it is perhaps unfair to compare the performance of Model 1 with
Model 2, as the test sets are different. Model 1’s test sample contains 3,153 complete ob-
servations from 2001 through 2020, while Model 2’s test sample contain 11,205 NaN-filled
observations from 2001 through 2020. Model 3 addresses the issue by training on incom-
plete NaN-filled observations across the same time period as Model 1, but conducts its test
on observations with no missing values, which is exactly the same test set as Model 1. This
makes for the fairest comparison with Model 1 – to see if researchers should stick to the
age-old practice of throwing away observations with incomplete information, or make use
of advanced machine learning techniques to deal with missing data that is so commonplace

2For practical reasons, we exclude Units and Market Value per Unit from the empirical analysis because of
their extremely high level of missing values. While XGBoost will perform better with the inclusion of these
two sparse data fields in our analysis, using them will necessitate the elimination of 93 percent of the sale
transactions when we create a "No NaN" data set for direct comparisons.
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Table 4: Out of sample R2 and MPE by year

Model 1 Model 2 Model 3 Model 4

Train Set No NaNs With NaNs With NaNs With NaNs
Test Set No NaNs With NaNs No NaNs No NaNs

Train Start 2000 2000 2000 1978 R2 difference
Test Start 2001 2001 2001 2001 between models

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE 1 vs 3 1 vs 4

2001 -1121.87 21.59% 91.40 1.53% 97.62 3.28% 96.74 0.29% NaN NaN
2002 84.38 3.83% 80.13 -14.86% 88.96 -0.82% 94.82 11.90% -4.58 -10.44
2003 91.24 -0.87% 89.29 23.51% 95.32 1.59% 89.24 -2.50% -4.08 2.00
2004 88.27 3.75% 69.98 15.41% 98.55 2.07% 98.84 0.72% -10.28 -10.57
2005 94.37 10.89% 87.81 8.02% 87.08 14.88% 89.06 8.40% 7.29 5.31
2006 92.52 0.04% 87.12 13.35% 96.61 2.12% 95.95 0.62% -4.09 -3.43
2007 80.86 -1.02% 76.67 -1.06% 94.90 -1.90% 95.41 -3.82% -14.04 -14.55
2008 96.72 -7.15% 83.93 -13.00% 84.23 -7.11% 89.24 -2.83% 12.49 7.48
2009 60.16 -20.23% 78.17 -25.63% 87.53 -15.77% 86.52 4.62% -27.37 -26.36
2010 97.25 6.10% 94.43 21.84% 96.88 9.11% 96.91 17.72% 0.37 0.34
2011 97.07 8.41% 89.80 2.40% 97.61 8.22% 98.32 12.38% -0.54 -1.25
2012 96.38 -3.68% 92.64 -25.66% 94.04 -1.61% 94.82 -2.12% 2.34 1.56
2013 89.52 2.97% 96.55 1.27% 96.97 5.30% 97.21 8.45% -7.45 -7.69
2014 97.27 0.89% 93.98 4.35% 98.31 3.72% 97.24 2.95% -1.04 0.03
2015 89.89 2.25% 94.06 2.40% 93.38 1.99% 97.19 5.16% -3.49 -7.30
2016 85.02 -2.14% 93.58 -2.79% 93.80 -3.38% 93.59 -2.07% -8.78 -8.57
2017 97.59 -2.43% 92.00 -0.02% 96.58 -2.36% 96.28 -1.44% 1.01 1.31
2018 90.11 -0.74% 96.79 6.15% 99.17 3.27% 98.14 0.05% -9.06 -8.03
2019 96.85 0.01% 97.47 0.09% 98.18 -1.13% 98.60 3.39% -1.33 -1.75
2020 95.55 4.98% 94.15 -9.07% 95.54 2.42% 96.84 1.77% 0.01 -1.29

All Years 84.12 0.99% 91.66 1.31% 95.51 1.54% 96.21 2.83% -11.39 -12.09
All Years ex ’01 91.69 0.76% 91.65 1.31% 95.49 1.52% 96.20 2.85% -3.80 -4.51

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-
pressed as a percentage.

in the real world. The answer is seemingly clear. Column 6 shows that the R2
oos is 95.51

percent, a large jump of 11.39 percent over Model 1 which is trained by a data set with no
missing values.

Perhaps, it is not necessary to artificially constrain oneself to being “fair” when employ-
ing machine learning techniques to deal with missing data. The reason for digesting obser-
vations with missing data is simple – every observation is valuable, even if it is incomplete.
Therefore, in Model 4, we go back as far as 1978 to train our model, even though the NCREIF
database in the 1980s and 1990s is full of incomplete observations. The out-of-sample per-
formance test is conducted across 2001 through 2020 on observations with no missing val-
ues, for a direct comparison to Model 1 which is typically favoured by researchers. The re-
sults from Column 8 is unequivocal. The out-of-sample predictive performance increases to
96.21 percent, marking a 12.09 percentage points jump in R2

oos . Nevertheless, I note that the
MPE increases from Model 1 to Model 4, meaning that on a portfolio basis, the advantages
of incorporating observations with missing values are not as good as they are made out to
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Table 5: Out of sample R2 and MPE by property type

Model 1 Model 2 Model 3 Model 4

Property Type R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

Industrial 66.17 3.30% 69.16 3.73% 68.99 1.83% 62.63 2.15%
Office 83.55 1.42% 88.65 3.61% 93.08 -1.50% 93.24 -0.57%

Apartment 75.92 2.04% 87.40 1.90% 81.76 1.05% 83.15 0.27%
Retail 76.58 10.74% 89.36 4.96% 94.98 5.09% 95.84 1.55%
Hotel 81.50 -0.59% 81.65 16.79% 88.88 25.42% 78.29 26.85%

All 84.12 0.99% 91.66 1.31% 95.51 1.54% 96.21 2.83%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models, by property

type. R2s are expressed as a percentage.

be. Of course, the counter-argument is that the real world is full of observations that are
tainted by missing values. What good is a model if it is unable to make a prediction when an
observation is missing some values, which is the main issue with Model 1, a model that is
commonly preferred by researchers in the past? In addition, the increasing MPE from Model
1 to Model 4 is not observed when we start expanding our analysis by property type.

Table 5 summarises the out-of-sample performance by the property types3. Detailed
performance reports are found in Appendix E. Comparing Columns 2 and 6 of Table 5, it is
unequivocal than a model trained by incomplete data is superior to a nice but smaller data
set of complete observations. The R2

ooss are consistently higher across all property types,
with the biggest jump of 18.4 percent in the retail sector. The MPE also improves for all
sectors except for Hotel.

At the risk of repeating the obvious, if one were to use k-fold cross-validation for per-
formance assessment, we will see the R2s jumping across the board, a possible sign of data
leakage. For example, Model 1’s R2s for Office and Apartment are 95.91 percent and 92.34
percent respectively under 10-fold cross-validation, as opposed to 83.55 percent and 75.92
percent respectively under walk-forward validation.

5.2 Reducing data loss by removing covariates

Using all the variables that the NCREIF database provides might lend itself to criticism that
the data loss is too high if one were to strictly exclude any observation that has at least one
missing value. Indeed, in Table 1, we observe a data loss of 78 percent when we exclude
observations with missing values. In contrast, Deppner et al. (2023) and Cannon and Cole
(2011) experience data loss of 45 percent and 24 percent, respectively, by choosing to use less
covariates in their analysis. From a machine learning perspective, any data is good data as
long as you know how to make good use of it, but for a fairer comparison, I shall remove the

3Appendix E displays the performance metrics (R2 and MPE) by year and by property type. The property
type Hotel has a shorter train and test period because it has more observations with missing values in the
earlier years than other property types.
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Table 6: Properties with missing values (Full and Reduced data sets)

Property Type Data Set With NaNs No NaNs Loss (%)

All Full 14470 3181 -78.0
All Reduced 14470 10605 -26.7

Industrial Full 4964 931 -81.2
Industrial Reduced 4964 3567 -28.1

Office Full 3738 803 -78.5
Office Reduced 3738 2620 -29.9

Apartment Full 3402 952 -72.0
Apartment Reduced 3402 2696 -20.8

Retail Full 2077 377 -81.8
Retail Reduced 2077 1474 -29.0

Hotel Full 289 118 -59.2
Hotel Reduced 289 248 -14.2

Notes: This table reports the number of NCREIF properties that have been sold, with and without missing data.

Full refers to the data set that utilises the 63 data fields provided by NCREIF, while Reduced removes the top 10

data fields that contains most missing data, namely Cap Rate,Base Rent,Total Expense, Net Rentable Area, Age,

Percentage Leased, Market Value per Square Feet, Square Feet, CapEx Lag 1, CapEx Lag 2.

top 10 data fields in terms of missing data from the training data set4. Table 6 shows a much
smaller data loss of 26.7 percent for across all NCREIF properties, with data losses ranging
from 14.2 percent to 29.9 percent when split across property types, bringing data losses in
line with what Cannon and Cole (2011) and Deppner et al. (2023) experience in their studies.

Table 7 shows the out-of-sample performance on the narrower data set, for all properties
and across different property types. Appendix F contains the detailed performance reports,
broken down by year and by property type. True enough, if one were to look at Model 1,
which is trained only on observations with no missing values, the performance improves,
with R2

oos increasing from 84.12 percent to 92.49 percent. This is to be expected, as the data
loss drops from 78.0 percent to 26.7 percent. In Model 3, we see an improvement in R2

oos
to 94.18 percent, once the machine learning model is permitted to train on observations
with missing values in the reduced data set, once again proving that it is important not to
discard such observations. Such improvements are also seen across all property types (ex-
cept Industrial). Perhaps, what is more interesting is that while reducing the number of data
fields improves performance for Model 1, it does not translate to an improvement for Model
3. Again, this hints that with the help of machine learning algorithms, more covariates are
better, even if the “more” is plagued with missing values.

4These data fields are Cap Rate,Base Rent,Total Expense, Net Rentable Area, Age, Percentage Leased, Market
Value per Square Feet, Square Feet, CapEx Lag 1, CapEx Lag 2.
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Table 7: Out of sample R2 and MPE (Full and Reduced Data Sets)

Model 1 Model 2 Model 3 Model 4

Property Type Data Set R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

All Full 84.12 0.99% 91.66 1.31% 95.51 1.54% 96.21 2.83%
All Reduced 92.49 1.55% 91.85 -0.68% 94.18 -4.26% 93.21 2.00%

Industrial Full 66.17 3.30% 69.16 3.73% 68.99 1.83% 62.63 2.15%
Industrial Reduced 77.28 1.18% 71.73 5.37% 74.75 1.65% 56.31 2.45%

Office Full 83.55 1.42% 88.65 3.61% 93.08 -1.50% 93.24 -0.57%
Office Reduced 89.39 1.41% 90.25 6.33% 92.72 2.58% 92.69 3.42%

Apartment Full 75.92 2.04% 87.40 1.90% 81.76 1.05% 83.15 0.27%
Apartment Reduced 88.44 0.66% 88.18 1.48% 89.05 1.28% 89.33 1.21%

Retail Full 76.58 10.74% 89.36 4.96% 94.98 5.09% 95.84 1.55%
Retail Reduced 83.19 3.28% 89.22 3.11% 93.31 2.88% 93.70 3.94%

Hotel Full 81.50 -0.59% 81.65 16.79% 88.88 25.42% 78.29 26.85%
Hotel Reduced 82.97 8.79% 85.92 21.38% 83.30 27.42% 89.53 19.18%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage. Full refers to the data set that utilises the 63 data fields provided by NCREIF, while

Reduced removes the top 10 data fields that contains most missing data, namely Cap Rate,Base Rent,Total

Expense, Net Rentable Area, Age, Percentage Leased, Market Value per Square Feet, Square Feet, CapEx Lag 1,

CapEx Lag 2.

5.3 Which covariates matter?

We now investigate the relative importance of individual covariates for the performance of
each model using the variable importance measure described in Section 4.6. To begin, for
each model, we calculate the reduction in R2 from setting all the values of a given predictor
to zero within each training sample, and average them into a single importance measure for
each predictor. Figure 4 reports the resultant importance of the top-20 asset-level charac-
teristics for a model that is trained on a data set without missing values and with missing
values, respectively. Variable importance within each model is normalized to sum to one,
allowing for the interpretation of relative importance for each model. Figure 5 reports over-
all rankings of the 61 asset-level characteristics for both models. We rank the importance of
each variable for each model, then sum their ranks. Variables are ordered so that the high-
est summed ranks are on the top, and the lowest ranking variables are at the bottom. The
color gradient within each column shows the model-specific ranking of variables from least
(white) to most important (dark blue).

Figure 4 demonstrates that market appraisal is the single most important variable of im-
portance for both models, occupying slightly more than 70 percent weight in terms of rel-
ative importance to both models. This is perhaps not surprising, otherwise the market ap-
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Figure 4: Top-20 most influential variables

Notes: Variable importance for the top-20 most influential variables in each model. The top panel is Model
1, which is trained on observations without missing value. The bottom panel is Model 3, which is trained on
observations that include missing values. Variable importance within each model is normalized to sum to one.

praisal industry which values more than $20.7 trillion5 worth of U.S. commercial real estate
would have lost its relevance to investors and regulators. Perhaps what is more interesting
is that Age, which is missing is 20.4 percent of observations (see Table 1), is considered the
second most important variable for Model 3, which is trained on observations with miss-
ing values. Additionally, there are a good number of variables that are present in the top-20
ranking for Model 3 but entirely missing in Model 1, namely Manager Group ID, Property

5Source: NAREIT study as of 2021:Q2

16



Figure 5: Heatmap of variable importance by model

Notes: Rankings of 61 asset-level variables in terms of overall model contribution. Variables are ordered based
on the sum of their ranks over both models, with the most influential characteristics on the top and the least
influential on the bottom. Columns correspond to the individual models (without missing values on the left
column, with missing values on the right column), and the color gradient within each column indicate the
most influential (dark blue) to the least influential (white).

Subtype, Property Type, Interest Payment, Leverage indicator, Total Expense. Conversely,
there are some variables that are present in the top-20 ranking for Model 1 but entirely
missing in Model 3, namely Base Rent, Insurance Expense, Market Value per Sq Ft, Util-
ity Expense, Administrative Expenses, Leveraged Income Return, Reimbursement Income.
This demonstrates that while both models may use the same data fields as inputs, the pres-
ence of missing values can greatly change the relative importance of variables for predicting
and understanding the behaviour of commercial property prices.

Figure 5 is a heatmap that gives a fuller picture of the similarities and differences be-
tween the two models. First, both models are in general agreement on the top few variables
(market value and net operating income, with varying lags). Second, both models are in
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general agreement on the bottom few variables which are deemed useless (loan proceeds
from new financing, acquisition cost, other principal payments). Third, the model that is
trained on missing values relies more on categorical variables than the model that is trained
on complete information. I see a few standouts in Manager Group ID, MSA, Property Types
and Subtypes, Fund Types, Leverage Indicator, Appraisal Type, Joint Venture Indicator. This
is perhaps understandable. As the issue of missing variables are mostly limited to numerical
variables (as seen in Table 1) while categorical variables are mostly complete (see Table A.2),
a model that is compelled to take into account both missing and non-missing values will
naturally rely more on variables that tend to have fewer missing values, i.e. categorical vari-
ables.

5.4 Marginal association between covariates and expected prices

Figure 6 traces out the model-implied marginal impact of individual asset-level variables
on expected transaction prices. Despite obvious limitations, such plots are important in
helping us visualize and differentiate the first-order impact of covariates when we introduce
missing values into the picture. We choose the six illustrative variables for Figure 6. The
first four are Market Value, Age, Income and Net Rentable Area, which are variables that
are commonly agreed by both Model 1 and Model 3 as important. The fifth is Insurance
Expense, which is a variable that is highly ranked by Model 1 but not found in Model 3’s top
rankings. The sixth is Interest Payment, which is a variable that is highly ranked by Model 3
but not found in Model 1’s top rankings.

In the top left panel of Figure 6, which displays the relationship of expected prices and
lagged appraised market values, we see a near-perfect linear relationship between expected
price and market value, nothing of note or unusual to speak of. However, we start seeing an
interesting deviation when we move to the top right panel, which displays expected price
versus property age. For the model that is trained on complete observations (Model 1), we
see a positive relationship between price and age, with the relationship being steeper for
properties younger than 15 years old, and gentler for properties older than that. For the
model that is trained on a larger set of incomplete information (Model 3), it does not give
much credibility to age when a property is more than 15 years old. The slope is practically
flat. However, prior to 15 years old, there is a sharp negative relationship between price and
age, meaning that young or new commercial properties command a price premium, all else
equal. This is more believable than Model 1’s relationship, at least in the realm of young
commercial real estate.

In the middle left panel of Figure 6, which displays expected price versus net operating
income (NOI), we observe a deviation between the two models. When NOI turns negative,
Model 3 expects a property to be more valuable, whereas Model 1 does not predict a change
in expected price. A negative NOI has two possible explanations: a large drop in gross in-
come, or a large increase in expenses. In the case of Model 3, it is possible that the nega-
tive slope is associated with a large expenditure increase, which may imply that an owner is
beautifying or window-dressing a property for sale. On the other hand, Model 1 is unable to
detect any implied movement in expected prices for negative NOI.

In the middle right panel of Figure 6, which displays expected price versus net rentable
area (NRA), Model 3 flatlines throughout all NRA values, whereas Model 1 has a positive
slope for most values until it flatlines above 700,000 sq ft. This implies that Model 3 does not
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Figure 6: Marginal association between expected price and asset-level features

Notes: The panels show the sensitivity of expected transaction prices (vertical axis) to the individual character-

istics of properties (holding all other covariates fixed at their median values).

really require NRA to assist it make price predictions, preferring to rely on other covariates
instead.

In the bottom left panel of Figure 6, we observe the marginal effect of insurance expense
on expected price. This variable is listed amongst the Top 20 for Model 1, which is trained
on complete observations, but not Model 3. Again, we see a big difference in marginal as-
sociations. A higher insurance expense implies a higher expected property price for Model
3, while a higher insurance expense implies a lower property price for Model 1. It is diffi-
cult to derive an explanation for the deviations, or to make an assessment of which model is
“correct”, as a higher insurance expense might imply a more valuable property as assessed
by the insurance company, or it might imply a lower operating income for the owner which
may translate to lower property prices.
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Table 8: Out of sample R2 and MPE

Model 1 Model 2 Model 3 Model 4

Train Set No NaNs With NaNs With NaNs With NaNs
Test Set No NaNs With NaNs No NaNs No NaNs

Train Start 2000 2000 2000 1978
Test Start 2001 2001 2001 2001

Data Type R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

Full 84.12 0.99% 91.66 1.31% 95.51 1.54% 96.21 2.83%
Without MV 75.05 4.98% 81.96 11.82% 80.47 21.64% 81.52 7.84%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. “Full” refers to

the full data set of variables. “No MV” refers to a slightly narrower data set where appraised market value and

all associated variables such as market value per square foot, income return, capital appreciation return, cash

flow return, and cap rate are removed. R2s are expressed as a percentage.

In the bottom right panel of Figure 6, we observe the marginal effect of interest payment
on expected price. This variable is listed amongst the Top 20 for Model 3, which is trained
on incomplete observations, but not Model 1. Not surprisingly, Model 1 does not detect
any marginal impact on prices when interest payment changes, showing a flatline across all
interest amounts. However, for Model 3, while following the same flatline relationship as
Model 1 for interest amounts below $400,000, it starts exhibiting a negative relationship for
interest amounts above $400,000. This suggests that Model 3 believes that beyond a certain
threshold, a large monthly interest payment is a reflection of a distressed property.

To summarize this section, we demonstrate that researchers have to be careful in making
conclusions when they only make use of data sets that contain complete information. For
top-ranked variables, marginal relationships can change from positive to negative once we
start absorbing observations with incomplete information, suggesting that data may not be
completely missing at random.

5.5 Modeling without market value related variables

We see in Figure 4 that appraised market values of properties play a dominant role in pre-
dicting prices, taking up more than 70 percent weight in terms of relative importance for
both models. As a robustness test, it would be interesting to see how the models will react
if we remove market values and related variables, such as market value per square foot, in-
come return, capital appreciation return, cash flow return, and cap rate. It is not only an
interesting study; such a model is important to investors or regulators as not all properties
come with appraisal values. Such properties constitute 45.8 percent of the NCREIF database
(see Table 1). Would using missing values improve predictive performance? What features
or variables would then play an important role in predicting property values, when an im-
portant variable such as market valuation is missing?

Table 8 reports the findings. As expected, we see a big drop in R2
oos after I exclude market

value and associated variables, from 84.12 percent to 75.05 percent in Model 1, which trains
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Figure 7: Top-20 most influential variables (without market value related variables)

Notes: Variable importance for the top-20 most influential variables in each model. The top panel is Model
1, which is trained on observations without missing values. The bottom panel is Model 3, which is trained on
observations that include missing values. Variable importance within each model is normalized to sum to one.

on observations with complete information. Can observations with missing values save the
day? To a certain extent, yes. In Model 3, which trains with data starting from 2000, the R2

oos
increases from 75.05 percent to 80.47 percent. If we start training with incomplete data from
1978 in Model 4, we push the R2

oos slightly further up to 81.52 percent.
Looking at Figure 7, NOI now plays the largest role for both models, albeit at lower weight

than Market Value used to take. For Model 1, NOI contributes approximately 50 percent to
predictive ability, while for Model 3 it contributes approximately 35 percent. We also observe
the same phenomenon for the full data set, where categorical variables such as property
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type, manager group ID, and MSA tend to rank as the most important variables for Model 3
but are missing in the Top-20 ranking for Model 1.

To summarize, machine learning models are able to adapt when important variables
such as market valuation and cap rate are missing from observations, although one has to
be satisfied with a lower R2 of 80 percent. Second, even with fewer key variables in the
picture, it is still important for models to include observations with missing values, as they
can increase R2s by 5-6 percent over Model 1’s.

6 Is data missing at random?

Figure 8: Percentage of missing values over time

Notes: This figure plots the time series of missing values as a percentage of total observations in each calendar

quarter from 2003 through 2020. The top panel plots percentage of missing values for base rent. The middle

panel plots the percentage of missing values for leasing percentage. The bottom panel plots the percentage of

missing values for total expenses. The three panels are overlaid with the time series of the NAREIT index (in

purple). Numbers on the left-axis are expressed as a percentage, while numbers on the right-axis are expressed

as index levels.

While it is beyond the scope of this paper to conduct an investigation on whether miss-
ing data in the NCREIF database are missing at random or otherwise, Figure 8 might be
of interest to the reader. It plots the time series of missing values as a percentage of total
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observations in each calendar quarter for some predictors, namely base rent, percentage
leased and total expenses. We also overlay the time series of percentage missing values (in
blue) with the NAREIT index (in purple). There are two observations. First, within a single
year, the change in the percentage of missing values can vary greatly from quarter to quar-
ter, doubling and halving in some cases. That should not be the case. Second, from year
to year, we observe spikes in missing values during certain periods. For instance, we see
a spike in mid-2003, early-2006, mid-2010, early 2012, mid-2015 and early-2020. If data is
missing completely at random, one might expect to see smoother lines in Figure 8. The fact
that NCREIF members voluntarily submit more data in some years while withholding data
in other years should be a cause for concern and perhaps is an area for further research.

In Table 9, we take a look at some differences between properties that have, and do not
have, missing values in Figure 8. We observe statistically significant differences. For proper-
ties that are missing information on percentage leased, they have lower market values, are
smaller in size, exhibit lower total returns and lower cap rates. For properties that have miss-
ing information on base rent and total expenses, they have lower market values, are smaller
in square footage, have lower total returns but higher cap rates. While these data points are
not smoking guns on whether NCREIF data is missing at random, it is an issue that definitely
deserves further study.

7 Potential applications

While this paper focuses on missing data with respect to the NCREIF database, there are
other well-known real estate databases where machine learning may be useful in dealing
with missing data. Bokhari and Geltner (2011) make use of sales data from Real Capital An-
alytics (RCA), a New York-based firm that is widely used to provide commercial property
transactions among institutional investment firms in the U.S. The raw data set from RCA
consists of 100,000 observations. After discarding properties that have incomplete or miss-
ing information, and dropping properties that were held for less than 1.5 years or were part
of an arm’s length transaction, the remaining data set consists of 6,767 observations, a stag-
gering data loss of 93 percent! Another obvious area is mortgage data. In Berkovec et al.
(1994), which looks at default-risk characteristics of Federal Housing Administration (FHA)
insured single-family residential mortgages, there are only 357,894 out of 1.6 million loans
that have detailed loan and borrower characteristics for their analysis. That is a data loss
of 78 percent. Avery et al. (2007) find multiple issues with Home Mortgage Disclosure Act
(HMDA) data. For example, under reporting rules, lenders need not provide geographic in-
formation for applications for pre-approval that are denied or approved but not accepted.
They also find that a growing share of reported applications and loans did not include race
or ethnicity information. For example, from 1993 to 2002, the proportion of missing race
or ethnicity data grew from 8 percent to 28 percent. Finally, they find that missing income
information is more likely for some types of loans than others (for instance, home improve-
ment lending), which is another clear example that data is not missing at random.

Applying machine learning algorithms to deal with missing data in these studies could
potentially be interesting, especially if they generate different conclusions from the original
studies.
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Table 9: Characteristics of properties with and without missing values

Panel A: Base Rent

Missing Not Missing t-statistic p-value

Market Value ($000s) 15,626 40,434 -21.81 0.00
Sq Ft (000s) 220.46 260.79 -6.15 0.00
Total Return (%) 1.96 2.48 -3.37 0.00
Cap Rate (%) 6.90 6.14 6.65 0.00

Panel B: Percentage Leased

Missing Not Missing t-statistic p-value

Market Value ($000s) 12,604 36,051 -13.87 0.00
Sq Ft (000s) 166.94 258.60 -9.34 0.00
Total Return (%) 0.61 2.54 -8.47 0.00
Cap Rate (%) 4.20 6.47 -13.52 0.00

Panel C: Total Expenses

Missing Not Missing t-statistic p-value

Market Value ($000s) 15,621 39,754 -20.66 0.00
Sq Ft (000s) 220.93 259.55 -5.75 0.00
Total Return (%) 2.17 2.40 -1.44 0.15
Cap Rate (%) 8.69 5.78 25.02 0.00

Notes: This table reports the characteristics of properties with and without missing values in base rent (top

panel), in leasing percentage (middle panel), and in total expenses (bottom panel). The measured character-

istics are market values, square footage, total return, and cap rate.

8 Potential dangers

Most of this paper focuses on how machine learning algorithms improve the accuracy of
prediction models, leading to a potential economic impact (or benefit) for users, such as
property investors or NCREIF members. What is typically less spoken about in research
papers is the impact on the society at large. It is quite possible that ignoring missing vari-
ables in our models can lead to unintended biases and consequences. For example, the
Government of the Netherlands makes use of AVMs to assess property taxes6. In Figure 6,
we see that for commercial properties younger than 20 years old, the relationship between
price and age is negative if we incorporate observations with missing values into our training
set. However, the relationship between price and age is positive if we exclude observations
with missing values from our training set. This could set the stage for a biased model that
unintentionally benefits younger properties and penalises older ones when it comes to tax

6Transparency Through the Use of International Standards, https://www.fig.net/resources/proceedings/
fig_proceedings/fig2023/papers/ts05c/TS05C_hermans_kathmann_et_al_11946.pdf
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assessments. Table 10 shows that there are clear differences between young and old prop-
erties when it comes to missing values. For example, older properties tend to have more
missing values for Base Rent, Total Expenses, Cap Rate. This paper highlights the risks of us-
ing models that do not take into account the full population of observations, both good and
bad. At the very least, this paper should inspire government regulators to revisit their AVMs
and understand the potential differences in outcomes if observations with missing values
are incorporated into their models.

Table 10: Missing Numerical Variables between Young and Old Properties

Variable NaN (%) - Young
Properties

NaN (%) - Old
Properties

Difference (%)

NOI 4.4 4.1 -0.3
NOI_Lag1 5.9 6.5 0.6
CapEx 9.4 7.4 -2.0
CapEx_Lag1 8.6 7.8 -0.8
CapEx_Lag2 10.9 9.9 -1.0
Market Value 4.4 4.1 -0.3
Market Value_Lag1 4.4 4.1 -0.3
Market Value_Lag2 5.9 6.5 0.6
Market Value per Sq Ft 18.5 10.2 -8.3
Market Value per Unit 63.5 78.1 14.6
Income Return 4.4 4.1 -0.3
Capital Appreciation Return 4.4 4.1 -0.3
Total Return 4.4 4.1 -0.3
Cash Flow Return 4.4 4.1 -0.3
Lev. Income Return 4.4 4.1 -0.3
Lev. Appreciation Return 4.4 4.1 -0.3
Lev. Total Return 4.4 4.1 -0.3
Interest Payment 4.7 4.2 -0.5
Principal Payment 4.5 4.3 -0.2
Loan Balance 4.4 4.1 -0.3
Loan Balance_Lag1 4.4 4.1 -0.3
Loan Proceeds 4.5 4.2 -0.3
Sq Ft 18.0 9.8 -8.2
Units 59.1 73.3 14.2
Percentage Leased 7.4 9.1 1.7
Net Rentable Area 16.1 21.0 4.9
Additional Acquisition Costs 5.9 4.7 -1.2
Leasing Commissions 5.3 5.4 0.1
Tenant Improvements 6.5 6.4 -0.1
Building Improvements 9.0 7.7 -1.3
Bulding Expansion 5.0 4.5 -0.5
Other CapEx 6.9 6.0 -0.9
Other Principal Payment 4.5 4.2 -0.3

Note: This table presents the percentage of NaNs for properties in the NCREIF
database that are younger than 20 years old and older than 20 years old.
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Table 10: Missing Numerical Variables (continued)

Variable NaN (%) - Young
Properties

NaN (%) - Old
Properties

Difference (%)

Regular Principal Payment 4.4 4.3 -0.1
Base Rent 7.8 25.8 18.0
Contingent Income 4.6 4.3 -0.3
Reimbursement Income 6.2 6.1 -0.1
Other Income 8.9 7.8 -1.1
Admin Expense 6.5 5.8 -0.7
Marketing Expense 5.4 5.1 -0.3
Utility Expense 5.6 4.9 -0.7
Maintenance Expense 5.1 4.7 -0.4
Insurance Expense 5.4 4.7 -0.7
Management Fee Expense 4.6 4.3 -0.3
Tax Expense 5.6 4.6 -1.0
Other Expense 7.3 8.3 1.0
Total Expense 4.9 23.9 19.0
Cap Rate 31.9 45.2 13.3

Note: This table presents the percentage of NaNs for properties in the NCREIF
database that are younger than 20 years old and older than 20 years old.

9 Conclusion

This paper attempts to introduce real estate researchers to the benefits of using missing
data, which is an issue that was not easy to deal with before the advent of advanced ma-
chine learning algorithms. With algorithms such as sparsity awareness, machine learning
models have been able to deal with sparse data in scientific fields ranging from image recog-
nition to high-energy physics. To deal with the issue of missing data in real estate, we use
an award-winning7 algorithm, XGBoost, developed by Chen and Guestrin (2016). Using di-
rect comparisons, by training and testing across the same time period and using the same
data fields, we see an improvement in out-of-sample predictability when we introduce ob-
servations with missing values. However, with machine learning, one does not need to “play
fair”, as these models can go wider and longer, for example going back further into time (in
the case of U.S. commercial real estate, a few decades earlier to 1978) to train and learn, or
accepting more data fields even if these fields may be sparsely populated. No information
is bad information for learning machines. This is in contrast to traditional linear models,
which are compelled to train on complete observations, missing out on a huge opportunity
to absorb bits and pieces of information from incomplete observations that are common-
place in the real estate world.

By looking at the marginal effects of asset-level variables on expected property values (or

7The impact of XGBoost has been widely recognized in a number of machine learning and data sci-
ence challenges. Among the 29 winning solutions published at Kaggle’s blog during 2015, 17 solutions used
XGBoost. The success of XGBoost also witnessed in KDD Cup 2015, where it was used by every winning team
in the top 10 ranking.
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prices), we demonstrate that researchers have to be careful in making conclusions if they
only make use of data sets that contain complete information. For top-ranked variables,
marginal relationships can change from positive to negative (or vice versa) once we start
absorbing observations with incomplete information, suggesting that the data may not be
completely missing at random.

In short, observations with missing data should not be thrown away if we know how to
deal with them, and we should rely on machine learning as our faithful accomplice.
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A Description statistics of NCREIF data set

Table A.1: Descriptive Statistics of Numerical Variables

Variable Mean Median Stdev Min Max

Year 2007.23 2008 9.12 1978.00 2020
Age 32.4 32 15.98 0.00 180
Sq Ft (000s) 249.46 173.94 334.5 0.06 20797.42
Units 271.97 263.5 178.63 1.00 3870
Percentage Leased (%) 90.29 95 14.23 0.09 100
Net Rentable Area (000s) 234.81 170.44 325.24 0.00 20797.42
Sale Price ($000s) 34,993 17,893 63,306 10.00 2,133,497
Market Value ($000s) 33,657 17,300 60,643 100.00 2,080,000
Market Value_Lag1 ($000s) 33,242 17,121 60,262 100.00 2,087,000
Market Value_Lag2 ($000s) 33,030 17,020 59,750 100.00 2,083,000
Market Value per Sq Ft 137.19 91.65 158.99 0.71 2718.26
Market Value per Unit ($000s) 155.07 114.88 146.53 8.08 3,045.75
Cap Rate (%) 6.29 6.22 4.08 -28.11 29.91
NOI ($000s) 502.23 287.7 866.24 -8528.79 24919.11
NOI_Lag1 ($000s) 496.88 283.76 867.22 -3110.16 26772.14
Base Rent ($000s) 846.44 536.23 1350.17 0.11 40246.18
Contingent Income ($000s) 2.41 0 40.62 0.00 3326.93
Reimbursement Income ($000s) 91.87 5.77 337.61 0.00 15869.33
Other Income ($000s) 53.38 0.19 312.54 0.00 10372.94
CapEx ($000s) 190.53 25.25 1040.63 0.00 86723.96
CapEx_Lag1 ($000s) 252.07 25.04 1924.91 0.00 100706.87
CapEx_Lag2 ($000s) 329.87 26.91 2776 0.00 174763.67
Additional Acq Costs ($000s) 143.23 0 2820.04 0.00 221740.22
Leasing Commissions ($000s) 28.16 0 150.54 0.00 7946.93
Tentant Improvements ($000s) 69.79 0 702.8 0.00 69819.59
Building Improvements ($000s) 87.58 0 1168.81 0.00 71477.32
Building Expansion ($000s) 2.68 0 81.24 0.00 6474.58
Other CapEx ($000s) 20.82 0 713.73 0.00 80963.13
Income Return (%) 1.71 1.69 1.44 -26.13 53.77
Capital Appreciation Return (%) 0.63 0 8.01 -80.35 112.23
Total Return (%) 2.34 1.9 8.14 -80.27 112.88
Cash Flow Return (%) 1.12 1.41 2.53 -80.65 53.62
Lev. Income Return (%) 1.83 1.85 20.03 -1079.91 878.18
Lev. Appreciation Return (%) -0.87 0 188.35 -21328.90 1871.42
Lev. Total Return (%) 0.96 2.07 184.92 -20873.74 2291.53
Interest Payment ($000s) 120.82 0 358.06 0.00 14786.82
Principal Payment ($000s) 189.73 0 2289.04 0.00 130528.19
Regular Principal Payment ($000s) 75.02 0 1480.18 0.00 130528.19
Other Principal Payment ($000s) 114.53 0 1744.44 0.00 89705.13

Notes: This table presents the summary statistics of numerical variables found in the NCREIF database. All variables
are lagged by 2 calendar quarters for robustness purposes. For example, "Market Value", "Market Value_Lag1" and
"Market Value_Lag2" refer to market value lagged by 6 months, 9 months and 12 months, respectively.
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Table A.1: Descriptive Statistics of Numerical Variables (continued)

Variable Mean Median Stdev Min Max

Loan Balance ($000s) 9794 0 26760 0.00 950000
Loan Balance_Lag1 ($000s) 9837 0 26685 0.00 950000
New Financing ($000s) 131.9 0 2687.62 0.00 161500
Admin Expense ($000s) 38.54 3.02 105.56 0.00 4434.48
Marketing Expense ($000s) 11.84 0 55.78 0.00 2092.79
Utility Expense ($000s) 40.62 7.61 117.08 0.00 8762.33
Maintenance Expense ($000s) 65.35 17.3 211.7 0.00 16772.73
Insurance Expense ($000s) 12.72 4.63 31.88 0.00 1660.57
Management Fee Expense ($000s) 21.52 8.94 88.99 0.00 9241.54
Tax Expense ($000s) 97.06 40.09 237.04 0.00 10929.75
Other Expense ($000s) 54.94 2.01 362.63 0.00 17099.37
Total Expense ($000s) 449.76 245.75 901.24 0.07 26577.01

Notes: This table presents the summary statistics of numerical variables found in the NCREIF database. All variables
are lagged by 2 calendar quarters for robustness purposes. For example, "Market Value", "Market Value_Lag1" and
"Market Value_Lag2" refer to market value lagged by 6 months, 9 months and 12 months, respectively.

Table A.2: Descriptive Statistics of Dummy and Categorical Variables

Variable Count Percentage

Joint Venture
No 10981 75.9
Yes 3489 24.1

Has Leverage

No 8558 59.1
Yes 5912 40.9

Post NPI Freeze
No 4081 28.2
Yes 10389 71.8

YYYYQ
20052 289 2.0
20193 277 1.9
20144 260 1.8
. . .
. . .
. . .
19802 1 0

Notes: This table presents the summary statistics of dummy and categorical vari-
ables found in the NCREIF database. 30



Table A.2: Descriptive Statistics of Dummy and Categorical Variables (continued)

Variable Count Percentage

19812 1 0
19781 1 0

Property Type

Apartment 3402 23.5
Hotel 289 2.0
Industrial 4964 34.3
Office 3738 25.8
Retail 2077 14.4

Property Subtype

Apartment - Garden 2158 14.9
Apartment - High Rise 774 5.3
Apartment - Low Rise 236 1.6
Industrial - R&D 480 3.3
Industrial - Flex Space 652 4.5
Industrial - Manufacturing 30 0.2
Industrial - Other 114 0.8
Industrial - Office Showroom 20 0.1
Industrial - Warehouse 3668 25.3
Office - CBD 720 5.0
Office - Suburban 3018 20.9
Retail - Community 654 4.5
Retail - Theme / Festival Center 4 0.0
Retail - Fashion / Specialty Center 47 0.3
Retail - Neighborhood 756 5.2
Retail - Outlet 3 0.0
Retail - Power Center 141 1.0
Retail - Regional 156 1.1
Retail - Super Regional 89 0.6
Retail - Single Tenant 215 1.5
NaN 535 3.7

Manager Group ID

75 1176 8.1
71 1117 7.7
19 746 5.2
. . .
. . .
. . .
73 27 0.2

Notes: This table presents the summary statistics of dummy and categorical vari-
ables found in the NCREIF database. 31



Table A.2: Descriptive Statistics of Dummy and Categorical Variables (continued)

Variable Count Percentage

14 22 0.2
157 13 0.1
Others 1341 9.3

MSA
4472 1323 9.1
1602 955 6.6
1922 953 6.6
. . .
. . .
. . .
5880 28 0.2
4520 24 0.2
3120 22 0.2
Others 954 6.6

Region

East 3177 22
Midwest 2276 15.7
South 4355 30.1
West 4662 32.2

Division
East North Central 1635 11.3
Mideast 1550 10.7
Northeast 1627 11.2
Southeast 2371 16.4
Southwest 1984 13.7
West Mountain 1288 8.9
West North Central 641 4.4
West Pacific 3374 23.3

Appraisal

None 6610 45.7
Internal 5030 34.8
External 2815 19.5
NaN 15 0.1

FundType

Separate Account 3271 22.6
ODCE Fund 1882 13.0
Closed End 1352 9.3

Notes: This table presents the summary statistics of dummy and categorical vari-
ables found in the NCREIF database.
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Table A.2: Descriptive Statistics of Dummy and Categorical Variables (continued)

Variable Count Percentage

Open End 1026 7.1
Not Elsewhere Classified 77 0.5
Public REIT 1 0.0
NaN 6861 47.4

Notes: This table presents the summary statistics of dummy and categorical vari-
ables found in the NCREIF database.
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B Default hyperparameters for machine learning methods

I do not require a validation sample as I do not perform any hyperparameter optimization,
following Elkind et al. (2022). I employ XGBoost8, which stands for Extreme Gradient Boost-
ing, is a scalable, distributed gradient-boosted regression tree (GBRT) machine learning li-
brary developed by Chen and Guestrin (2016). It provides parallel tree boosting and is the
leading machine learning library for regression, classification, and ranking problems.

I use default hyperparameters for XGBoost. This forms the lowest bound of performance
for my machine learning models. Machine learning training is executed on an Apple M1
Ultra chip with a 20-core CPU, a 48-core GPU and 128 GB unified memory.9

Table B.1: Default hyperparameters for machine learning methods

No. Machine Learning Model Default Hyperparameters

1 XGBoost n_trees=100
learning_rate=0.3
min_split_loss=0
max_depth=6
min_child_weight=1
subsample=1
sampling_method=uniform
l1_regulartization=0
l2_regulartization=1
tree_method=auto

8xgboost v1.3.3 , https://xgboost.readthedocs.io/en/stable/
9While these CPU, GPU and memory specifications are extremely powerful for a personal computer (Apple

claims the M1 Ultra is the most powerful chip ever in a personal computer, as of 1 April 2023), regression trees
and neural networks do stretch the computer to its limit, even without attempting hyperparameter tuning.
Equipped with a more powerful GPU such as the Nvidia Tesla K80 with thousands of cores, hyperparameter
tuning can take place and I would expect better performance results for NCREIF property values, but I do not
expect a qualitative difference in my conclusion.
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C Yearly breakdown of transactions, by property type

Table C.1: Yearly breakdown of transactions with and without missing values (Industrial)

Year Total No. Obs. with Data Loss Year Total No. Obs. with Data Loss
of Obs. no NaNs (%) of Obs. no NaNs (%)

1978 2 0 -100 2000 84 6 -92.9
1979 1 0 -100 2001 83 13 -84.3
1980 3 0 -100 2002 113 28 -75.2
1981 3 0 -100 2003 123 21 -82.9
1982 12 0 -100 2004 223 25 -88.8
1983 25 0 -100 2005 213 31 -85.4
1984 33 0 -100 2006 230 40 -82.6
1985 61 0 -100 2007 206 38 -81.6
1986 61 0 -100 2008 76 13 -82.9
1987 45 0 -100 2009 91 20 -78.0
1988 68 0 -100 2010 107 33 -69.2
1989 74 0 -100 2011 126 24 -81.0
1990 51 0 -100 2012 248 66 -73.4
1991 53 0 -100 2013 301 82 -72.8
1992 39 0 -100 2014 236 58 -75.4
1993 42 0 -100 2015 196 73 -62.8
1994 79 0 -100 2016 247 104 -57.9
1995 58 0 -100 2017 241 56 -76.8
1996 121 0 -100 2018 145 34 -76.6
1997 157 0 -100 2019 272 111 -59.2
1998 111 0 -100 2020 212 55 -74.1
1999 92 0 -100 Total 4964 931 -81.2

Notes: This table reports the yearly breakdown of NCREIF sale transactions, with and without missing values.

Columns 3 and 7 display the number of observations that do not contain missing values within the 63 data

fields shown in Tables 1 and 2, with the exclusion of Units and Market Value per Unit.
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Table C.2: Yearly breakdown of transactions with and without missing values (Office)

Year Total No. Obs. with Data Loss Year Total No. Obs. with Data Loss
of Obs. no NaNs (%) of Obs. no NaNs (%)

1978 1 0 -100 2000 109 9 -91.7
1979 0 0 N.A. 2001 64 4 -93.8
1980 0 0 N.A. 2002 86 16 -81.4
1981 1 0 -100 2003 120 24 -80.0
1982 3 0 -100 2004 167 37 -77.8
1983 10 0 -100 2005 219 36 -83.6
1984 27 0 -100 2006 194 46 -76.3
1985 18 0 -100 2007 199 43 -78.4
1986 33 0 -100 2008 79 18 -77.2
1987 26 0 -100 2009 57 15 -73.7
1988 27 0 -100 2010 69 13 -81.2
1989 50 0 -100 2011 70 21 -70.0
1990 42 0 -100 2012 130 48 -63.1
1991 38 0 -100 2013 167 65 -61.1
1992 31 0 -100 2014 170 57 -66.5
1993 49 0 -100 2015 161 64 -60.2
1994 40 0 -100 2016 190 75 -60.5
1995 58 0 -100 2017 164 46 -72.0
1996 111 0 -100 2018 206 73 -64.6
1997 101 0 -100 2019 160 62 -61.3
1998 118 0 -100 2020 88 31 -64.8
1999 85 0 -100 Total 3738 803 -78.5

Notes: This table reports the yearly breakdown of NCREIF sale transactions, with and without missing values.

Columns 3 and 7 display the number of observations that do not contain missing values within the 63 data

fields shown in Tables 1 and 2, with the exclusion of Units and Market Value per Unit.
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Table C.3: Yearly breakdown of transactions with and without missing values (Apartment)

Year Total No. Obs. with Data Loss Year Total No. Obs. with Data Loss
of Obs. no NaNs (%) of Obs. no NaNs (%)

1978 1 0 -100 2000 69 7 -89.9
1979 1 0 -100 2001 97 12 -87.6
1980 0 0 N.A. 2002 73 17 -76.7
1981 0 0 N.A. 2003 89 25 -71.9
1982 0 0 N.A. 2004 115 27 -76.5
1983 1 0 -100 2005 162 39 -75.9
1984 0 0 N.A. 2006 180 30 -83.3
1985 2 0 -100 2007 128 40 -68.8
1986 2 0 -100 2008 73 14 -80.8
1987 1 0 -100 2009 84 19 -77.4
1988 9 0 -100 2010 90 20 -77.8
1989 5 0 -100 2011 135 39 -71.1
1990 5 0 -100 2012 173 68 -60.7
1991 5 0 -100 2013 232 114 -50.9
1992 10 0 -100 2014 179 80 -55.3
1993 39 0 -100 2015 182 80 -56.0
1994 37 0 -100 2016 251 125 -50.2
1995 32 1 -96.9 2017 197 51 -74.1
1996 59 0 -100 2018 183 45 -75.4
1997 79 0 -100 2019 178 52 -70.8
1998 70 0 -100 2020 117 47 -59.8
1999 57 0 -100 Total 3402 952 -72.0

Notes: This table reports the yearly breakdown of NCREIF sale transactions, with and without missing values.

Columns 3 and 7 display the number of observations that do not contain missing values within the 63 data

fields shown in Tables 1 and 2, with the exclusion of Units and Market Value per Unit.
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Table C.4: Yearly breakdown of transactions with and without missing values (Retail)

Year Total No. Obs. with Data Loss Year Total No. Obs. with Data Loss
of Obs. no NaNs (%) of Obs. no NaNs (%)

1978 1 0 -100 2000 51 5 -90.2
1979 0 0 N.A. 2001 55 5 -90.9
1980 0 0 N.A. 2002 56 10 -82.1
1981 0 0 N.A. 2003 75 9 -88.0
1982 7 0 -100 2004 95 12 -87.4
1983 11 0 -100 2005 162 41 -74.7
1984 15 0 -100 2006 51 11 -78.4
1985 16 0 -100 2007 62 15 -75.8
1986 27 0 -100 2008 17 4 -76.5
1987 18 0 -100 2009 19 2 -89.5
1988 24 0 -100 2010 47 6 -87.2
1989 19 0 -100 2011 66 22 -66.7
1990 10 0 -100 2012 59 20 -66.1
1991 9 0 -100 2013 142 49 -65.5
1992 17 0 -100 2014 95 25 -73.7
1993 24 0 -100 2015 93 31 -66.7
1994 24 0 -100 2016 87 40 -54.0
1995 35 0 -100 2017 67 19 -71.6
1996 65 0 -100 2018 36 8 -77.8
1997 112 0 -100 2019 70 31 -55.7
1998 98 0 -100 2020 55 12 -78.2
1999 85 0 -100 Total 2077 377 -81.8

Notes: This table reports the yearly breakdown of NCREIF sale transactions, with and without missing values.

Columns 3 and 7 display the number of observations that do not contain missing values within the 63 data

fields shown in Tables 1 and 2, with the exclusion of Units and Market Value per Unit.
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Table C.5: Yearly breakdown of transactions with and without missing values (Hotel)

Year Total No. Obs. with Data Loss Year Total No. Obs. with Data Loss
of Obs. no NaNs (%) of Obs. no NaNs (%)

1978 0 0 N.A. 2000 5 0 -100.0
1979 0 0 N.A. 2001 3 0 -100.0
1980 0 0 N.A. 2002 6 0 -100.0
1981 0 0 N.A. 2003 10 0 -100.0
1982 1 0 -100 2004 7 0 -100.0
1983 0 0 N.A. 2005 15 1 -93.3
1984 1 0 -100 2006 9 0 -100.0
1985 0 0 N.A. 2007 8 1 -87.5
1986 1 0 -100 2008 6 2 -66.7
1987 1 0 -100 2009 1 0 -100.0
1988 1 0 -100 2010 4 0 -100.0
1989 1 0 -100 2011 13 3 -76.9
1990 2 0 -100 2012 9 4 -55.6
1991 2 0 -100 2013 21 13 -38.1
1992 0 0 N.A. 2014 90 71 -21.1
1993 2 0 -100 2015 9 5 -44.4
1994 2 0 -100 2016 9 6 -33.3
1995 2 0 -100 2017 7 3 -57.1
1996 14 0 -100 2018 11 2 -81.8
1997 3 0 -100 2019 10 7 -30.0
1998 2 0 -100 2020 1 0 -100.0
1999 0 0 N.A. Total 289 118 -59.2

Notes: This table reports the yearly breakdown of NCREIF sale transactions, with and without missing values.

Columns 3 and 7 display the number of observations that do not contain missing values within the 63 data

fields shown in Tables 1 and 2, with the exclusion of Units and Market Value per Unit.
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D Out of sample R2 and MPE by year (natural log of variables)

Table D.1: Out of sample R2 and MPE by year, on natural log of variables

Model 1 Model 2 Model 3 Model 4

Train Set No NaNs With NaNs With NaNs With NaNs
Test Set No NaNs With NaNs No NaNs No NaNs

Train Start 2000 2000 2000 1978
Test Start 2001 2001 2001 2001

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 51.02 -0.05% 88.08 -0.20% 94.64 0.16% 97.40 0.03%
2002 93.04 -0.10% 86.48 0.04% 94.49 0.15% 95.47 0.11%
2003 89.65 0.04% 88.27 0.19% 88.58 -0.08% 88.98 -0.05%
2004 92.41 0.39% 93.7 0.42% 95.84 0.22% 96.82 0.07%
2005 93.83 0.55% 90.26 0.39% 94.32 0.42% 95.23 0.41%
2006 97.28 0.13% 89.01 0.35% 96.61 0.07% 97.19 0.09%
2007 95.85 -0.07% 94.37 -0.02% 95.98 -0.23% 96.88 -0.10%
2008 98.24 -0.48% 91.42 -0.99% 97.58 -0.52% 98.27 -0.49%
2009 92.00 -1.10% 89.54 -0.47% 93.09 -0.31% 94.44 -0.68%
2010 96.45 0.24% 91.10 0.76% 94.74 0.67% 95.43 0.60%
2011 90.10 0.58% 83.71 0.33% 94.06 0.48% 92.94 0.54%
2012 96.66 -0.26% 95.08 -0.14% 96.69 -0.13% 96.17 -0.08%
2013 97.41 0.14% 94.97 0.15% 97.82 0.13% 97.30 0.09%
2014 95.46 0.14% 95.05 0.33% 90.55 0.55% 94.56 0.37%
2015 97.20 0.13% 96.41 0.10% 97.75 0.05% 97.49 0.12%
2016 98.30 -0.12% 90.73 -0.30% 98.21 -0.06% 98.44 -0.10%
2017 98.16 -0.17% 96.24 0.01% 98.33 -0.17% 98.37 -0.15%
2018 97.79 -0.01% 96.27 0.02% 98.28 -0.03% 98.03 -0.03%
2019 98.78 0.05% 97.28 0.18% 98.73 0.04% 98.83 0.00%
2020 98.42 0.19% 86.52 -0.70% 98.47 0.17% 98.58 0.13%

All Years 96.76 0.05% 92.90 0.07% 96.95 0.09% 97.29 0.07%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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E Out of sample R2 and MPE by year, split by property type

Table E.1: Out of sample R2 and MPE by year (Industrial)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 -24.52 40.88% 74.93 -0.28% 80.57 -0.01% 91.10 -0.18%
2002 84.33 -5.35% 29.20 23.08% 84.33 2.00% 82.57 -9.31%
2003 67.93 2.68% 64.45 7.09% 82.46 -1.73% 87.50 1.38%
2004 31.24 27.07% 74.44 8.24% 85.35 1.49% 86.54 1.67%
2005 89.15 16.53% 80.84 7.98% 85.92 4.07% 85.21 10.27%
2006 96.47 4.01% 59.82 7.86% 95.44 3.64% 94.91 2.49%
2007 97.28 1.66% 92.97 0.53% 93.39 -4.80% 91.57 2.60%
2008 93.65 -8.67% 81.28 -13.16% 69.12 -2.23% 85.77 -6.51%
2009 80.89 -17.33% 47.32 -14.10% 50.56 -9.15% 78.73 -10.73%
2010 34.32 15.65% 35.93 26.63% 40.50 15.94% 40.10 12.79%
2011 83.68 22.28% -74.48 8.33% -89.01 21.28% -1189.57 16.97%
2012 93.54 -6.23% 89.92 -2.25% 95.42 -1.16% 95.32 -0.03%
2013 92.53 -0.82% 89.61 8.69% 94.70 0.92% 97.07 1.07%
2014 94.88 2.65% 92.57 3.56% 97.22 4.34% 97.84 5.24%
2015 92.49 3.60% 80.02 5.06% 95.27 3.44% 95.29 2.49%
2016 92.55 -0.86% 86.69 -5.75% 97.13 -2.84% 95.93 -1.83%
2017 95.31 -4.41% 78.61 7.07% 97.85 -3.54% 96.53 -5.59%
2018 97.17 3.55% 71.57 14.39% 96.6 6.10% 96.57 2.93%
2019 98.04 4.50% 95.63 2.20% 95.94 2.13% 95.19 4.75%
2020 96.52 7.05% 83.35 -17.05% 97.49 4.98% 97.09 7.91%

All Years 66.17 3.30% 69.16 3.73% 68.99 1.83% 62.63 2.15%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table E.2: Out of sample R2 and MPE by year (Office)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 -375610.37 17.80% 85.89 21.19% 79.71 22.07% 69.38 -8.67%
2002 73.57 14.95% -11.47 -5.46% 88.94 5.80% 92.70 40.54%
2003 82.18 -3.37% 81.29 3.99% 95.72 3.15% 84.84 5.03%
2004 58.80 15.12% 58.65 14.30% 98.16 2.11% 98.11 -1.77%
2005 83.24 17.76% 94.01 14.79% 90.79 7.58% 89.35 10.16%
2006 92.05 6.19% 65.51 14.92% 95.69 -0.86% 94.93 1.38%
2007 93.98 3.79% 74.58 2.79% 94.6 -0.74% 95.11 -0.49%
2008 98.70 -3.77% 77.06 -12.08% 77.25 -4.11% 84.63 -7.74%
2009 51.75 -26.03% 66.23 1.83% 83.99 -3.98% 82.08 -119.54%
2010 97.63 -1.15% 92.73 12.36% 84.28 -3.54% 78.48 0.21%
2011 67.25 3.24% 76.96 8.40% 78.28 9.88% 86.31 15.64%
2012 77.18 -6.92% 95.97 -7.61% 94.89 0.64% 95.89 -1.08%
2013 89.52 -0.03% 96.31 3.35% 96.78 3.01% 95.04 3.68%
2014 94.77 2.08% 94.22 1.63% 97.61 0.73% 98.04 0.89%
2015 77.12 -0.96% 94.46 0.03% 92.75 -3.85% 94.37 -5.04%
2016 81.73 -4.52% 88.52 -5.16% 86.30 -2.84% 87.09 -6.41%
2017 97.91 -3.29% 90.22 5.06% 97.87 0.60% 97.14 -1.63%
2018 98.82 -1.87% 95.58 -7.38% 94.64 -26.70% 94.96 2.59%
2019 98.16 6.93% 97.12 6.95% 98.92 3.34% 97.52 6.79%
2020 91.30 4.26% 97.8 -3.97% 97.41 4.93% 97.63 3.24%

All Years 83.55 1.42% 88.65 3.61% 93.08 -1.50% 93.24 -0.57%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table E.3: Out of sample R2 and MPE by year (Apartment)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 4.78 31.18% 76.48 -1.98% 92.80 6.67% 96.45 5.04%
2002 51.97 3.76% 89.69 2.73% 83.17 0.33% 85.04 -4.77%
2003 72.71 11.47% 74.30 2.68% 98.30 -1.08% 98.76 0.22%
2004 70.97 13.63% 79.47 -1.15% 92.10 -0.20% 92.59 2.41%
2005 23.02 24.78% 45.02 11.48% 33.55 13.31% 40.04 13.69%
2006 92.27 4.01% 73.58 10.86% 94.14 -0.94% 93.86 -0.36%
2007 94.32 -3.48% 92.46 -1.29% 90.90 -3.81% 91.69 -6.51%
2008 93.43 -5.75% 82.37 -11.66% 94.19 -8.29% 95.69 -7.43%
2009 45.92 -20.99% 82.38 -12.44% 79.82 -19.21% 58.80 -21.60%
2010 86.54 0.82% 93.43 7.00% 94.30 -5.39% 96.38 -0.99%
2011 96.23 1.81% 92.84 0.27% 97.90 0.96% 98.05 -2.51%
2012 95.91 -4.22% 88.08 -2.88% 93.66 -4.17% 93.62 -4.94%
2013 96.74 2.33% 91.19 3.69% 97.25 4.90% 97.39 1.10%
2014 95.72 0.60% 90.06 2.71% 90.96 3.46% 88.36 2.82%
2015 56.61 5.32% 77.74 10.51% 75.83 6.76% 74.90 5.68%
2016 86.92 -0.73% 93.86 1.20% 97.60 0.95% 97.79 0.49%
2017 94.89 0.76% 97.87 -1.52% 98.19 -1.02% 98.68 -0.47%
2018 97.28 1.57% 92.92 0.26% 98.07 0.52% 98.54 2.35%
2019 97.17 -2.16% 94.70 0.97% 95.79 -1.44% 96.30 -1.40%
2020 98.65 -1.75% 97.39 0.38% 98.51 0.84% 98.91 0.72%

All Years 75.92 2.04% 87.40 1.90% 81.76 1.05% 83.15 0.27%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table E.4: Out of sample R2 and MPE by year (Retail)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 -28.92 229.37% 75.19 -0.04% 70.84 33.33% 86.59 9.03%
2002 87.68 16.54% 93.32 -2.91% 93.88 2.78% 93.74 4.96%
2003 67.07 152.84% 85.58 8.48% 97.45 -0.99% 92.31 1.72%
2004 -31.57 43.05% 87.14 9.40% 90.50 12.35% 94.90 9.66%
2005 90.79 3.05% 87.17 13.54% 94.21 13.54% 94.11 11.49%
2006 81.21 11.63% 96.56 2.79% 76.07 1.64% 88.46 5.13%
2007 89.42 3.90% 88.74 2.38% 93.41 -7.68% 95.78 -4.92%
2008 98.05 1.52% 81.49 -3.47% 73.43 -8.83% 72.51 -11.43%
2009 79.28 -11.17% 62.79 -20.16% 58.50 -29.89% 51.67 -12.72%
2010 98.36 11.06% 91.06 3.06% 90.20 10.12% 92.14 25.25%
2011 92.14 12.17% 93.43 3.39% 92.58 5.51% 93.84 8.68%
2012 90.47 -1.49% 74.52 -0.61% 95.97 -0.68% 97.57 -4.08%
2013 92.10 0.37% 88.00 15.67% 96.27 9.50% 97.59 -8.80%
2014 94.03 5.44% 87.28 8.00% 88.29 1.88% 95.22 2.90%
2015 94.39 0.20% 95.66 6.31% 96.95 7.54% 94.54 4.85%
2016 94.53 1.49% 90.97 4.67% 97.58 3.58% 95.78 3.18%
2017 60.77 -4.39% 95.43 -6.68% 64.77 -4.31% 66.65 -2.56%
2018 91.74 -9.20% 95.99 -6.55% 92.05 6.05% 91.68 -13.43%
2019 68.29 2.88% 96.13 4.66% 97.29 2.98% 97.79 -1.66%
2020 98.22 3.40% 94.92 -6.82% 95.93 6.74% 96.07 -0.21%

All Years 76.58 10.74% 89.36 4.96% 94.98 5.09% 95.84 1.55%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table E.5: Out of sample R2 and MPE by year (Hotel)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2011 -62.62 -22.43% 88.40 81.68% -225.81 284.93% -185.32 187.75%
2012 38.80 5.74% 47.94 -1.99% 76.24 44.59% 73.54 61.95%
2013 81.04 -22.72% 91.13 12.57% 91.75 15.21% 95.08 17.87%
2014 85.87 0.61% 85.02 19.00% 74.15 22.40% 79.47 29.11%
2015 51.94 19.63% -18.36 7.11% 91.27 11.34% 90.02 7.54%
2016 96.51 4.13% 94.00 -1.59% 97.25 0.28% 93.65 -11.02%
2017 72.35 13.19% 89.00 4.18% 85.62 15.65% 87.52 6.34%
2018 -713.19 56.33% 78.62 -1.53% -153.30 22.79% -171.70 23.29%
2019 75.69 -6.50% 74.27 -7.50% 82.63 -10.58% -67.98 -12.32%

All Years 81.50 -0.59% 81.65 16.79% 88.88 25.42% 78.29 26.85%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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F Performance metrics for data sets with reduced number of
covariates, by year and by property type

Table F.1: Out of sample R2 and MPE by year (Reduced data set, All property types)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 95.14 -2.10% 91.09 -1.02% 95.22 -3.60% 93.48 -1.83%
2002 91.10 -0.56% 89.30 9.71% 91.59 1.82% 93.60 9.15%
2003 84.65 3.95% 88.46 -104.96% 88.78 -159.84% 86.80 4.91%
2004 94.27 5.38% 70.00 19.47% 97.35 4.63% 97.41 3.18%
2005 88.75 9.44% 86.84 9.54% 88.63 8.28% 89.70 8.26%
2006 88.77 2.74% 85.43 12.57% 88.88 6.35% 92.14 -0.19%
2007 73.92 -2.29% 79.64 -1.30% 77.32 -0.80% 74.98 0.04%
2008 84.76 -10.02% 85.02 -7.28% 83.94 -1.61% 82.58 -10.64%
2009 62.08 -12.05% 74.11 -7.13% 71.89 -6.44% 89.07 14.96%
2010 96.23 14.58% 94.58 14.17% 96.73 14.59% 91.09 35.25%
2011 96.67 12.99% 91.67 13.72% 96.23 7.28% 95.68 10.21%
2012 96.16 -0.55% 93.03 -1.59% 95.91 -1.10% 96.65 0.35%
2013 73.95 2.21% 95.85 0.03% 96.85 3.44% 95.66 -8.06%
2014 97.12 2.26% 89.16 3.05% 96.66 2.50% 96.86 4.76%
2015 92.77 2.49% 94.37 2.98% 94.38 0.32% 96.08 0.74%
2016 95.23 -2.35% 93.46 -3.49% 93.67 -5.12% 92.35 -4.65%
2017 97.28 -2.86% 90.25 2.70% 97.77 -1.05% 96.68 -2.72%
2018 97.92 0.32% 98.77 2.19% 99.37 2.43% 95.31 2.20%
2019 98.46 -1.65% 97.44 0.48% 97.95 -0.80% 97.93 -1.11%
2020 97.23 2.53% 96.00 -8.27% 97.36 1.27% 96.78 1.70%

All Years 92.49 1.55% 91.85 -0.68% 94.18 -4.26% 93.21 2.00%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table F.2: Out of sample R2 and MPE by year (Reduced data set, Industrial only)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 80.75 1.81% 75.18 -4.07% 82.66 -0.63% 89.04 4.87%
2002 62.98 -5.43% 20.61 36.63% 67.91 -6.62% 73.11 -0.40%
2003 63.91 7.98% 64.68 5.75% 82.02 4.45% 88.54 5.17%
2004 87.00 8.29% 74.07 17.76% 74.85 9.15% 87.50 0.13%
2005 86.37 11.70% 80.37 7.38% 86.11 6.03% 89.39 10.66%
2006 56.89 1.81% 48.54 7.43% 9.36 4.73% -28.34 4.37%
2007 81.17 -0.37% 57.15 11.20% 70.65 2.77% 74.28 1.58%
2008 92.65 -14.16% 85.48 -14.24% 85.73 -11.76% 91.30 -12.19%
2009 55.58 -18.56% 47.39 -15.52% 52.53 -16.74% 63.97 -14.91%
2010 47.40 16.61% 50.90 20.90% 51.61 16.80% 49.02 18.29%
2011 89.62 -32.30% -75.83 8.23% -63.82 11.40% -1070.11 10.95%
2012 96.48 -1.80% 89.15 15.86% 88.31 2.64% 87.44 -0.18%
2013 92.09 8.42% 92.53 0.17% 95.56 -0.57% 96.08 5.70%
2014 95.40 3.21% 94.23 3.59% 95.30 2.29% 95.29 6.68%
2015 93.69 -1.26% 82.52 4.25% 95.52 -2.82% 94.88 -1.32%
2016 96.35 -2.89% 91.70 -2.28% 96.33 -5.20% 96.56 -6.42%
2017 76.83 -0.63% 80.44 6.51% 87.40 -3.34% 88.73 -0.45%
2018 94.09 4.19% 93.91 6.17% 97.28 3.31% 97.94 0.42%
2019 97.11 4.15% 96.13 4.31% 97.32 2.94% 97.07 2.46%
2020 97.22 5.42% 78.52 -17.76% 96.66 3.03% 97.13 5.69%

All Years 77.28 1.18% 71.73 5.37% 74.75 1.65% 56.31 2.45%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table F.3: Out of sample R2 and MPE by year (Reduced data set, Office only)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 95.50 -0.25% 84.33 17.56% 94.86 1.66% 94.72 -7.98%
2002 0.84 12.95% 40.18 5.13% 17.32 9.73% 43.42 0.35%
2003 92.56 3.61% 75.69 7.15% 88.56 4.96% 94.72 -1.43%
2004 84.71 9.10% 57.80 17.89% 96.66 3.97% 96.06 4.94%
2005 91.20 8.66% 90.17 6.66% 89.69 8.67% 93.58 8.88%
2006 87.60 2.89% 74.70 39.43% 86.86 2.11% 86.00 17.79%
2007 66.29 3.54% 79.27 2.55% 77.26 4.49% 76.50 3.71%
2008 71.43 -10.83% 76.12 -7.25% 73.15 -4.98% 74.56 2.84%
2009 57.33 -13.18% 69.78 -8.48% 71.94 -27.42% 76.11 -1.85%
2010 83.25 10.16% 94.07 10.92% 94.77 11.78% 95.03 17.73%
2011 95.22 -17.06% 82.29 19.64% 95.21 10.68% 96.34 7.98%
2012 96.59 -6.44% 95.80 -4.52% 95.86 -0.59% 95.58 -5.89%
2013 81.38 0.46% 96.82 5.22% 96.89 8.39% 96.88 2.03%
2014 96.97 0.14% 96.04 1.34% 97.13 1.62% 96.49 -1.35%
2015 89.91 -0.79% 94.34 -1.22% 93.39 -1.79% 93.83 -2.01%
2016 88.28 -3.17% 92.48 2.30% 91.77 -1.24% 90.90 3.93%
2017 96.16 -1.23% 90.45 1.15% 96.99 -0.52% 96.77 -1.15%
2018 98.92 1.67% 98.03 -1.98% 98.63 0.59% 98.73 3.91%
2019 97.69 1.94% 96.84 3.58% 97.73 1.41% 97.95 3.37%
2020 98.70 4.22% 97.04 2.90% 96.69 6.01% 95.98 3.44%

All Years 89.39 1.41% 90.25 6.33% 92.72 2.58% 92.69 3.42%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table F.4: Out of sample R2 and MPE by year (Reduced data set, Apartment only)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 94.72 4.00% 75.83 -0.58% 95.48 3.51% 96.38 1.22%
2002 78.98 -1.15% 90.48 2.07% 89.45 2.14% 91.41 -1.59%
2003 91.65 -0.11% 72.72 3.39% 92.31 -1.40% 93.82 0.40%
2004 82.82 4.72% 84.73 0.02% 87.31 1.91% 77.37 2.14%
2005 46.80 12.61% 49.12 13.46% 46.38 12.57% 49.26 12.32%
2006 88.93 4.54% 76.24 4.23% 89.27 2.38% 86.35 2.13%
2007 92.28 -1.55% 94.06 -3.29% 94.01 -2.02% 94.06 -1.00%
2008 86.77 -9.94% 81.68 -14.17% 89.54 -8.54% 87.6 -9.04%
2009 47.58 -17.76% 81.92 -9.56% 54.93 -7.39% 51.68 -9.54%
2010 87.60 2.57% 91.56 8.44% 91.63 4.99% 93.81 8.60%
2011 96.28 -2.20% 91.59 0.66% 95.87 -0.59% 96.52 -2.38%
2012 96.18 -3.97% 90.12 -3.47% 94.22 -3.22% 94.5 -3.48%
2013 94.75 0.47% 90.93 3.36% 94.73 3.18% 94.51 4.45%
2014 87.72 3.72% 89.61 4.39% 89.11 4.60% 88.55 3.07%
2015 82.25 5.27% 80.56 7.51% 83.29 4.38% 84.39 4.88%
2016 97.17 -0.69% 94.12 0.24% 97.52 -0.01% 97.95 0.90%
2017 95.67 -2.23% 97.55 -2.12% 98.09 -2.30% 98.02 -1.78%
2018 97.76 1.07% 93.57 0.58% 97.52 0.49% 97.45 1.21%
2019 95.36 -0.76% 93.77 1.17% 96.49 0.04% 96.12 -0.54%
2020 98.69 0.79% 98.54 0.89% 98.83 1.19% 98.74 -0.79%

All Years 88.44 0.66% 88.18 1.48% 89.05 1.28% 89.33 1.21%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table F.5: Out of sample R2 and MPE by year (Reduced data set, Retail only)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2001 76.15 1.12% 75.40 2.37% 75.86 0.96% 78.97 18.95%
2002 93.89 6.25% 92.74 -1.80% 94.16 4.31% 92.66 2.68%
2003 85.00 3.02% 84.89 9.81% 85.95 0.50% 92.56 0.35%
2004 95.55 7.42% 86.82 5.46% 94.65 3.22% 92.11 4.82%
2005 93.85 8.13% 84.95 9.36% 92.58 8.45% 93.68 6.70%
2006 96.38 3.02% 96.35 1.57% 96.48 -0.53% 96.96 1.28%
2007 86.80 -0.94% 89.98 3.69% 89.74 4.61% 92.43 -3.17%
2008 91.78 -3.74% 71.88 -6.44% 67.75 -11.22% 74.39 -12.55%
2009 80.66 -21.12% 69.81 -18.16% 78.38 -21.46% 70.51 -22.59%
2010 91.06 -0.70% 89.18 0.51% 88.57 2.68% 90.17 3.79%
2011 92.25 14.54% 93.62 -12.25% 94.50 0.08% 93.08 16.58%
2012 90.24 -3.65% 74.17 -3.09% 92.46 0.66% 90.81 -1.68%
2013 95.39 9.43% 87.98 17.14% 95.88 14.80% 96.17 17.07%
2014 93.92 2.55% 92.32 4.74% 90.14 -0.40% 92.93 3.64%
2015 90.23 10.15% 94.78 6.07% 94.55 9.99% 93.04 4.13%
2016 97.63 2.56% 92.49 4.44% 97.11 4.95% 96.45 2.72%
2017 71.66 -7.71% 93.97 -5.83% 85.17 -8.06% 85.11 -8.73%
2018 94.30 -5.77% 98.06 -7.49% 95.68 -0.20% 95.14 -6.69%
2019 69.70 -0.60% 95.98 -0.38% 97.09 -1.11% 97.65 -1.85%
2020 97.75 -3.29% 93.98 -8.29% 95.36 -4.91% 94.81 -3.24%

All Years 83.19 3.28% 89.22 3.11% 93.31 2.88% 93.70 3.94%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.
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Table F.6: Out of sample R2 and MPE by year (Reduced data set, Hotel only)

Model 1 Model 2 Model 3 Model 4

Year R2
oos MPE R2

oos MPE R2
oos MPE R2

oos MPE

2011 -71.50 121.21% 87.11 159.13% -228.48 480.83% -40.21 195.00%
2012 72.12 39.89% 36.36 15.93% 68.30 47.12% 84.76 8.36%
2013 92.86 8.49% 91.89 9.90% 90.98 9.73% 94.88 9.49%
2014 94.06 3.51% 88.27 15.51% 88.24 16.06% 89.11 22.37%
2015 90.63 11.22% 87.22 12.54% 87.22 12.54% 90.60 13.02%
2016 97.71 -1.59% 95.58 -0.24% 95.58 -0.24% 94.76 -3.25%
2017 83.28 5.24% 90.06 3.96% 90.06 3.96% 92.77 0.25%
2018 74.94 0.94% 81.26 -4.77% 79.35 1.12% 93.48 -4.80%
2019 72.49 -8.82% 61.31 -7.56% 61.31 -7.56% -71.30 -10.11%

All Years 82.97 8.79% 85.92 21.38% 83.30 27.42% 89.53 19.18%

Notes: This table reports the out-of-sample R2s and mean percentage errors of various models. R2s are ex-

pressed as a percentage.

51


